Nuprl Lemma : canonicalizable-nat-to-nat
canonicalizable(ℕ ⟶ ℕ)
Proof
Definitions occuring in Statement :
canonicalizable: canonicalizable(T)
,
nat: ℕ
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
and: P ∧ Q
,
cand: A c∧ B
,
nat: ℕ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
Lemmas referenced :
canonicalizable-function,
nat_wf,
set_subtype_base,
le_wf,
int_subtype_base,
set-value-type,
int-value-type,
nat-retractible
Rules used in proof :
cut,
lemma_by_obid,
sqequalHypSubstitution,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isectElimination,
thin,
hypothesis,
independent_isectElimination,
sqequalRule,
intEquality,
lambdaEquality,
natural_numberEquality,
hypothesisEquality,
independent_pairFormation,
lambdaFormation,
because_Cache,
independent_functionElimination
Latex:
canonicalizable(\mBbbN{} {}\mrightarrow{} \mBbbN{})
Date html generated:
2016_05_13-PM-03_48_21
Last ObjectModification:
2015_12_26-AM-09_57_43
Theory : call!by!value_2
Home
Index