Nuprl Lemma : canonicalizable-product
∀[T:Type]. ∀[B:T ⟶ Type].  (canonicalizable(T) 
⇒ (∀x:T. canonicalizable(B[x])) 
⇒ canonicalizable(x:T × B[x]))
Proof
Definitions occuring in Statement : 
canonicalizable: canonicalizable(T)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
Lemmas referenced : 
istype-base, 
canonicalizable-iff, 
canonicalizable_wf, 
istype-universe, 
subtype_rel-equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
lambdaFormation_alt, 
productElimination, 
thin, 
productIsType, 
because_Cache, 
universeIsType, 
applyEquality, 
hypothesisEquality, 
sqequalRule, 
functionIsType, 
introduction, 
extract_by_obid, 
hypothesis, 
equalityIstype, 
sqequalBase, 
equalitySymmetry, 
sqequalHypSubstitution, 
independent_functionElimination, 
isectElimination, 
dependent_functionElimination, 
productEquality, 
inhabitedIsType, 
instantiate, 
universeEquality, 
rename, 
dependent_pairFormation_alt, 
baseApply, 
closedConclusion, 
baseClosed, 
dependent_pairEquality_alt, 
lambdaEquality_alt, 
equalityTransitivity, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
applyLambdaEquality, 
setElimination
Latex:
\mforall{}[T:Type].  \mforall{}[B:T  {}\mrightarrow{}  Type].
    (canonicalizable(T)  {}\mRightarrow{}  (\mforall{}x:T.  canonicalizable(B[x]))  {}\mRightarrow{}  canonicalizable(x:T  \mtimes{}  B[x]))
Date html generated:
2019_10_15-AM-10_20_03
Last ObjectModification:
2019_08_29-AM-11_01_39
Theory : call!by!value_2
Home
Index