Nuprl Lemma : norm-pair_wf_sq
∀[A,B:Type].
  (∀[Na:sq-id-fun(A)]. ∀[Nb:sq-id-fun(B)].  (norm-pair(Na;Nb) ∈ sq-id-fun(A × B))) supposing 
     ((B ⊆r Base) and 
     (A ⊆r Base) and 
     value-type(B) and 
     value-type(A))
Proof
Definitions occuring in Statement : 
norm-pair: norm-pair(Na;Nb)
, 
sq-id-fun: sq-id-fun(T)
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sq-id-fun: sq-id-fun(T)
, 
norm-pair: norm-pair(Na;Nb)
, 
has-value: (a)↓
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
subtype_base_sq, 
value-type-has-value, 
sq-id-fun_wf, 
subtype_rel_wf, 
base_wf, 
value-type_wf, 
product_subtype_base, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
functionExtensionality, 
productElimination, 
sqequalRule, 
callbyvalueReduce, 
setEquality, 
sqequalIntensionalEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
because_Cache, 
productEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
Error :isect_memberEquality_alt, 
Error :inhabitedIsType, 
universeEquality, 
Error :dependent_set_memberEquality_alt, 
independent_pairEquality, 
Error :lambdaEquality_alt, 
setElimination, 
rename, 
Error :lambdaFormation_alt, 
dependent_functionElimination, 
independent_functionElimination, 
lambdaFormation
Latex:
\mforall{}[A,B:Type].
    (\mforall{}[Na:sq-id-fun(A)].  \mforall{}[Nb:sq-id-fun(B)].    (norm-pair(Na;Nb)  \mmember{}  sq-id-fun(A  \mtimes{}  B)))  supposing 
          ((B  \msubseteq{}r  Base)  and 
          (A  \msubseteq{}r  Base)  and 
          value-type(B)  and 
          value-type(A))
Date html generated:
2019_06_20-AM-11_27_23
Last ObjectModification:
2018_10_06-AM-09_00_29
Theory : call!by!value_2
Home
Index