Nuprl Lemma : norm-union_wf
∀[A,B:Type].
  (∀[Na:id-fun(A)]. ∀[Nb:id-fun(B)].  (norm-union(Na;Nb) ∈ id-fun(A + B))) supposing (value-type(B) and value-type(A))
Proof
Definitions occuring in Statement : 
norm-union: norm-union(Na;Nb)
, 
id-fun: id-fun(T)
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
id-fun: id-fun(T)
, 
norm-union: norm-union(Na;Nb)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
Lemmas referenced : 
set_wf, 
equal_wf, 
value-type-has-value, 
id-fun_wf, 
value-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
functionExtensionality, 
unionElimination, 
thin, 
sqequalRule, 
applyEquality, 
hypothesisEquality, 
cumulativity, 
extract_by_obid, 
isectElimination, 
lambdaEquality, 
hypothesis, 
lambdaFormation, 
setElimination, 
rename, 
callbyvalueReduce, 
independent_isectElimination, 
inlEquality, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
dependent_functionElimination, 
independent_functionElimination, 
inrEquality, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B:Type].
    (\mforall{}[Na:id-fun(A)].  \mforall{}[Nb:id-fun(B)].    (norm-union(Na;Nb)  \mmember{}  id-fun(A  +  B)))  supposing 
          (value-type(B)  and 
          value-type(A))
Date html generated:
2017_04_14-AM-07_22_09
Last ObjectModification:
2017_02_27-PM-02_55_16
Theory : call!by!value_2
Home
Index