Nuprl Lemma : primrec-unroll+1
∀[n:{n:ℤ| 0 < n} ]. ∀[b,c:Top].  (primrec(n + 1;b;c) ~ c n primrec(n;b;c))
Proof
Definitions occuring in Statement : 
primrec: primrec(n;b;c)
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
less_than: a < b
, 
squash: ↓T
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtract: n - m
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
primrec-unroll-1, 
decidable__lt, 
istype-false, 
not-lt-2, 
less-iff-le, 
condition-implies-le, 
minus-add, 
istype-void, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
istype-less_than, 
add-subtract-cancel, 
istype-top, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
independent_pairFormation, 
imageElimination, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
Error :lambdaFormation_alt, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
Error :isect_memberEquality_alt, 
minusEquality, 
because_Cache, 
axiomSqEquality, 
Error :inhabitedIsType, 
Error :isectIsTypeImplies, 
Error :setIsType
Latex:
\mforall{}[n:\{n:\mBbbZ{}|  0  <  n\}  ].  \mforall{}[b,c:Top].    (primrec(n  +  1;b;c)  \msim{}  c  n  primrec(n;b;c))
Date html generated:
2019_06_20-AM-11_27_44
Last ObjectModification:
2019_05_08-PM-04_32_40
Theory : call!by!value_2
Home
Index