Nuprl Lemma : proof-by-cont-implies-LEM

(∀p:ℙ((¬¬p)  p))  (∀p:ℙ(p ∨ p)))


Proof




Definitions occuring in Statement :  prop: all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q
Definitions unfolded in proof :  implies:  Q all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] not: ¬A uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a false: False prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  or_wf not_wf not_over_or all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis sqequalHypSubstitution dependent_functionElimination thin lemma_by_obid isectElimination hypothesisEquality independent_functionElimination productElimination independent_isectElimination voidElimination universeEquality instantiate sqequalRule lambdaEquality cumulativity functionEquality

Latex:
(\mforall{}p:\mBbbP{}.  ((\mneg{}\mneg{}p)  {}\mRightarrow{}  p))  {}\mRightarrow{}  (\mforall{}p:\mBbbP{}.  (p  \mvee{}  (\mneg{}p)))



Date html generated: 2016_05_13-PM-03_46_05
Last ObjectModification: 2015_12_26-AM-09_58_41

Theory : call!by!value_2


Home Index