Nuprl Lemma : proof-by-cont-implies-LEM
(∀p:ℙ. ((¬¬p) 
⇒ p)) 
⇒ (∀p:ℙ. (p ∨ (¬p)))
Proof
Definitions occuring in Statement : 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
or_wf, 
not_wf, 
not_over_or, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
voidElimination, 
universeEquality, 
instantiate, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
functionEquality
Latex:
(\mforall{}p:\mBbbP{}.  ((\mneg{}\mneg{}p)  {}\mRightarrow{}  p))  {}\mRightarrow{}  (\mforall{}p:\mBbbP{}.  (p  \mvee{}  (\mneg{}p)))
Date html generated:
2016_05_13-PM-03_46_05
Last ObjectModification:
2015_12_26-AM-09_58_41
Theory : call!by!value_2
Home
Index