Nuprl Lemma : retractible_wf

[T:Type]. retractible(T) ∈ ℙ supposing T ⊆Base


Proof




Definitions occuring in Statement :  retractible: retractible(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a retractible: retractible(T) so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] implies:  Q prop:
Lemmas referenced :  exists_wf base_wf and_wf all_wf equal-wf-base-T has-value_wf_base equal-wf-base subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule Error :lambdaEquality_alt,  hypothesisEquality because_Cache baseApply closedConclusion baseClosed applyEquality Error :universeIsType,  functionEquality Error :inhabitedIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :isect_memberEquality_alt,  universeEquality

Latex:
\mforall{}[T:Type].  retractible(T)  \mmember{}  \mBbbP{}  supposing  T  \msubseteq{}r  Base



Date html generated: 2019_06_20-AM-11_28_21
Last ObjectModification: 2018_09_28-PM-03_22_47

Theory : call!by!value_2


Home Index