Nuprl Lemma : spread-sqle-pi12

[P:Base]
  ∀[t:Top]. (let x,y in P[x;y] ≤ P[fst(t);snd(t)]) 
  supposing ∀u,v:Base.  (P[exception(u; v);exception(u; v)] exception(u; v))


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] pi1: fst(t) pi2: snd(t) all: x:A. B[x] spread: spread def base: Base sqle: s ≤ t sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a has-value: (a)↓ pi1: fst(t) pi2: snd(t) prop: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  base_wf all_wf top_wf is-exception_wf has-value_wf_base pair-eta
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqleRule thin divergentSqle callbyvalueSpread sqequalHypSubstitution hypothesis lemma_by_obid isectElimination equalityTransitivity equalitySymmetry sqequalRule sqleReflexivity baseApply closedConclusion baseClosed hypothesisEquality spreadExceptionCases axiomSqleEquality isect_memberEquality because_Cache lambdaEquality sqequalIntensionalEquality exceptionSqequal dependent_functionElimination

Latex:
\mforall{}[P:Base]
    \mforall{}[t:Top].  (let  x,y  =  t  in  P[x;y]  \mleq{}  P[fst(t);snd(t)]) 
    supposing  \mforall{}u,v:Base.    (P[exception(u;  v);exception(u;  v)]  \msim{}  exception(u;  v))



Date html generated: 2016_05_13-PM-03_46_30
Last ObjectModification: 2016_01_14-PM-07_11_04

Theory : call!by!value_2


Home Index