Nuprl Lemma : fix_wf_coW_parameter

[P:Type]. ∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[G:⋂W:𝕌'. ((P ⟶ W) ⟶ P ⟶ (a:A × (B[a] ⟶ W)))]. ∀[p:P].
  (fix(G) p ∈ coW(A;a.B[a]))


Proof




Definitions occuring in Statement :  coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T apply: a fix: fix(F) isect: x:A. B[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2x.t[x] isect2: T1 ⋂ T2 bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  top: Top bfalse: ff ext-eq: A ≡ B and: P ∧ Q
Lemmas referenced :  fix_wf_corec_parameter top_wf bool_wf coW-corec
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality hypothesis sqequalHypSubstitution sqequalRule axiomEquality equalityTransitivity equalitySymmetry hypothesisEquality isect_memberEquality isectElimination thin because_Cache isectEquality universeEquality cumulativity functionEquality productEquality instantiate extract_by_obid lambdaEquality unionElimination equalityElimination functionExtensionality voidElimination voidEquality productElimination

Latex:
\mforall{}[P:Type].  \mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[G:\mcap{}W:\mBbbU{}'.  ((P  {}\mrightarrow{}  W)  {}\mrightarrow{}  P  {}\mrightarrow{}  (a:A  \mtimes{}  (B[a]  {}\mrightarrow{}  W)))].  \mforall{}[p:P].
    (fix(G)  p  \mmember{}  coW(A;a.B[a]))



Date html generated: 2019_06_20-PM-00_56_05
Last ObjectModification: 2019_01_02-PM-01_32_43

Theory : co-recursion-2


Home Index