Nuprl Lemma : coW-corec
∀[A:𝕌']. ∀[B:A ⟶ Type].  coW(A;a.B[a]) ≡ corec(C.a:A × (B[a] ⟶ C))
Proof
Definitions occuring in Statement : 
coW: coW(A;a.B[a]), 
corec: corec(T.F[T]), 
ext-eq: A ≡ B, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
isect-family: ⋂a:A. F[a], 
corec-family: corec-family(H), 
param-co-W: pco-W, 
coW: coW(A;a.B[a]), 
type-continuous: Continuous(T.F[T]), 
strong-type-continuous: Continuous+(T.F[T]), 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
type-monotone: Monotone(T.F[T]), 
continuous-monotone: ContinuousMonotone(T.F[T]), 
compose: f o g, 
fun_exp: f^n, 
assert: ↑b, 
bnot: ¬bb, 
sq_type: SQType(T), 
exists: ∃x:A. B[x], 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
true: True, 
less_than': less_than'(a;b), 
le: A ≤ B, 
subtract: n - m, 
uiff: uiff(P;Q), 
rev_implies: P ⇐ Q, 
not: ¬A, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
decidable: Dec(P), 
top: Top, 
all: ∀x:A. B[x], 
prop: ℙ, 
uimplies: b supposing a, 
guard: {T}, 
ge: i ≥ j , 
false: False, 
implies: P ⇒ Q, 
nat: ℕ, 
corec: corec(T.F[T]), 
subtype_rel: A ⊆r B, 
and: P ∧ Q, 
ext-eq: A ≡ B, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
it_wf, 
compose_wf, 
unit_wf2, 
continuous-id, 
strong-continuous-function, 
strong-continuous-depproduct, 
subtype_rel_wf, 
subtype_rel_function, 
subtype_rel_product, 
corec-ext, 
int_seg_wf, 
top_wf, 
le_wf, 
not-le-2, 
primrec_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
primrec-unroll, 
subtype_rel_weakening, 
coW-ext, 
nat_wf, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-minus, 
minus-add, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
condition-implies-le, 
less-iff-le, 
not-ge-2, 
false_wf, 
subtract_wf, 
decidable__le, 
primrec0_lemma, 
less_than_wf, 
ge_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
nat_properties, 
coW_wf, 
corec_wf
Rules used in proof : 
isectEquality, 
dependent_set_memberEquality, 
functionExtensionality, 
dependent_pairEquality, 
promote_hyp, 
dependent_pairFormation, 
equalityElimination, 
hypothesis_subsumption, 
minusEquality, 
intEquality, 
addEquality, 
unionElimination, 
voidEquality, 
dependent_functionElimination, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
natural_numberEquality, 
lambdaFormation, 
intWeakElimination, 
rename, 
setElimination, 
because_Cache, 
isect_memberEquality, 
axiomEquality, 
independent_pairEquality, 
productElimination, 
equalitySymmetry, 
equalityTransitivity, 
hypothesis, 
independent_pairFormation, 
universeEquality, 
applyEquality, 
cumulativity, 
functionEquality, 
hypothesisEquality, 
productEquality, 
lambdaEquality, 
sqequalRule, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
instantiate, 
thin, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].    coW(A;a.B[a])  \mequiv{}  corec(C.a:A  \mtimes{}  (B[a]  {}\mrightarrow{}  C))
Date html generated:
2018_07_25-PM-01_37_21
Last ObjectModification:
2018_07_21-PM-07_11_44
Theory : co-recursion
Home
Index