Nuprl Lemma : strong-continuous-function
∀[F:Type ⟶ Type]. ∀[A:Type].  Continuous+(T.A ⟶ F[T]) supposing Continuous+(T.F[T])
Proof
Definitions occuring in Statement : 
strong-type-continuous: Continuous+(T.F[T]), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
strong-type-continuous: Continuous+(T.F[T]), 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
all: ∀x:A. B[x]
Lemmas referenced : 
nat_wf, 
strong-type-continuous_wf, 
false_wf, 
le_wf, 
subtype_rel_isect, 
subtype_rel_dep_function
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
hypothesis, 
functionEquality, 
cumulativity, 
lemma_by_obid, 
universeEquality, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
natural_numberEquality, 
lambdaFormation, 
isectEquality, 
functionExtensionality, 
independent_isectElimination
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  \mforall{}[A:Type].    Continuous+(T.A  {}\mrightarrow{}  F[T])  supposing  Continuous+(T.F[T])
Date html generated:
2016_05_13-PM-04_09_47
Last ObjectModification:
2015_12_26-AM-11_22_45
Theory : subtype_1
Home
Index