Nuprl Lemma : strong-continuous-function

[F:Type ⟶ Type]. ∀[A:Type].  Continuous+(T.A ⟶ F[T]) supposing Continuous+(T.F[T])


Proof




Definitions occuring in Statement :  strong-type-continuous: Continuous+(T.F[T]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a strong-type-continuous: Continuous+(T.F[T]) ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q uiff: uiff(P;Q) all: x:A. B[x]
Lemmas referenced :  nat_wf strong-type-continuous_wf false_wf le_wf subtype_rel_isect subtype_rel_dep_function
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality hypothesis functionEquality cumulativity lemma_by_obid universeEquality isect_memberEquality isectElimination hypothesisEquality lambdaEquality applyEquality because_Cache equalityTransitivity equalitySymmetry dependent_set_memberEquality natural_numberEquality lambdaFormation isectEquality functionExtensionality independent_isectElimination

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  \mforall{}[A:Type].    Continuous+(T.A  {}\mrightarrow{}  F[T])  supposing  Continuous+(T.F[T])



Date html generated: 2016_05_13-PM-04_09_47
Last ObjectModification: 2015_12_26-AM-11_22_45

Theory : subtype_1


Home Index