Nuprl Lemma : W-induction1

[A:Type]. ∀[B:A ⟶ Type]. ∀[Q:W(A;a.B[a]) ⟶ ℙ].
  ((∀a:A. ∀f:B[a] ⟶ W(A;a.B[a]).  ((∀b:B[a]. Q[f b])  Q[Wsup(a;f)]))  (∀w:W(A;a.B[a]). Q[w]))


Proof




Definitions occuring in Statement :  Wsup: Wsup(a;b) W: W(A;a.B[a]) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] subtype_rel: A ⊆B W: W(A;a.B[a]) uimplies: supposing a unit: Unit prop: pW-sup: pW-sup(a;f) Wsup: Wsup(a;b) guard: {T}
Lemmas referenced :  param-W-induction unit_wf2 it_wf subtype_rel-equal param-W_wf equal-unit all_wf W_wf Wsup_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality hypothesisEquality applyEquality dependent_functionElimination independent_isectElimination because_Cache independent_functionElimination equalityElimination functionEquality cumulativity universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[Q:W(A;a.B[a])  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a:A.  \mforall{}f:B[a]  {}\mrightarrow{}  W(A;a.B[a]).    ((\mforall{}b:B[a].  Q[f  b])  {}\mRightarrow{}  Q[Wsup(a;f)]))  {}\mRightarrow{}  (\mforall{}w:W(A;a.B[a]).  Q[w]))



Date html generated: 2016_05_14-AM-06_15_31
Last ObjectModification: 2015_12_26-PM-00_04_55

Theory : co-recursion


Home Index