Step
*
of Lemma
W-induction
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[Q:W(A;a.B[a]) ⟶ ℙ].
  ((∀a:A. ∀f:B[a] ⟶ W(A;a.B[a]).  ((∀b:B[a]. Q[f b]) 
⇒ Q[Wsup(a;f)])) 
⇒ (∀w:W(A;a.B[a]). Q[w]))
BY
{ ((UnivCD THENA Auto) THEN RenameVar `F' (-2)) }
1
1. [A] : Type
2. [B] : A ⟶ Type
3. [Q] : W(A;a.B[a]) ⟶ ℙ
4. F : ∀a:A. ∀f:B[a] ⟶ W(A;a.B[a]).  ((∀b:B[a]. Q[f b]) 
⇒ Q[Wsup(a;f)])@i
5. w : W(A;a.B[a])@i
⊢ Q[w]
Latex:
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[Q:W(A;a.B[a])  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a:A.  \mforall{}f:B[a]  {}\mrightarrow{}  W(A;a.B[a]).    ((\mforall{}b:B[a].  Q[f  b])  {}\mRightarrow{}  Q[Wsup(a;f)]))  {}\mRightarrow{}  (\mforall{}w:W(A;a.B[a]).  Q[w]))
By
Latex:
((UnivCD  THENA  Auto)  THEN  RenameVar  `F'  (-2))
Home
Index