Nuprl Lemma : W-rel_wf
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[w:W(A;a.B[a])].
  (W-rel(A;a.B[a];w) ∈ n:ℕ ⟶ (ℕn ⟶ cw-step(A;a.B[a])) ⟶ cw-step(A;a.B[a]) ⟶ ℙ)
Proof
Definitions occuring in Statement : 
W-rel: W-rel(A;a.B[a];w)
, 
W: W(A;a.B[a])
, 
cw-step: cw-step(A;a.B[a])
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
W-rel: W-rel(A;a.B[a];w)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
W: W(A;a.B[a])
, 
subtype_rel: A ⊆r B
, 
cw-step: cw-step(A;a.B[a])
, 
nat: ℕ
, 
prop: ℙ
Lemmas referenced : 
param-W-rel_wf, 
unit_wf2, 
it_wf, 
nat_wf, 
int_seg_wf, 
pcw-step_wf, 
W_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
functionEquality, 
cumulativity, 
natural_numberEquality, 
setElimination, 
rename, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:W(A;a.B[a])].
    (W-rel(A;a.B[a];w)  \mmember{}  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  cw-step(A;a.B[a]))  {}\mrightarrow{}  cw-step(A;a.B[a])  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2016_05_14-AM-06_15_02
Last ObjectModification:
2015_12_26-PM-00_05_13
Theory : co-recursion
Home
Index