Nuprl Lemma : W-rel_wf

[A:Type]. ∀[B:A ⟶ Type]. ∀[w:W(A;a.B[a])].
  (W-rel(A;a.B[a];w) ∈ n:ℕ ⟶ (ℕn ⟶ cw-step(A;a.B[a])) ⟶ cw-step(A;a.B[a]) ⟶ ℙ)


Proof




Definitions occuring in Statement :  W-rel: W-rel(A;a.B[a];w) W: W(A;a.B[a]) cw-step: cw-step(A;a.B[a]) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T W-rel: W-rel(A;a.B[a];w) so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] W: W(A;a.B[a]) subtype_rel: A ⊆B cw-step: cw-step(A;a.B[a]) nat: prop:
Lemmas referenced :  param-W-rel_wf unit_wf2 it_wf nat_wf int_seg_wf pcw-step_wf W_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality hypothesisEquality applyEquality functionEquality cumulativity natural_numberEquality setElimination rename universeEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:W(A;a.B[a])].
    (W-rel(A;a.B[a];w)  \mmember{}  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  cw-step(A;a.B[a]))  {}\mrightarrow{}  cw-step(A;a.B[a])  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2016_05_14-AM-06_15_02
Last ObjectModification: 2015_12_26-PM-00_05_13

Theory : co-recursion


Home Index