Nuprl Lemma : param-W-rel_wf

[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P]. ∀[par:P]. ∀[w:pW par].
  (param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;w) ∈ n:ℕ
   ⟶ (ℕn ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]))
   ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])
   ⟶ ℙ)


Proof




Definitions occuring in Statement :  param-W-rel: param-W-rel(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];par;w) param-W: pW pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T param-W-rel: param-W-rel(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];par;w) nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q subtract: m subtype_rel: A ⊆B le: A ≤ B pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) pi2: snd(t) isl: isl(x) so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b param-W: pW
Lemmas referenced :  lt_int_wf eqtt_to_assert assert_of_lt_int istype-top istype-void assert_wf subtract_wf decidable__le istype-false not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top nat_wf minus-add istype-int minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__lt not-lt-2 add-mul-special zero-mul le-add-cancel-alt le_wf less_than_wf btrue_wf bfalse_wf pcw-steprel_wf pcw-step_wf int_seg_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff pcw-step-agree_wf param-W_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule Error :lambdaEquality_alt,  natural_numberEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality hypothesis extract_by_obid isectElimination because_Cache Error :inhabitedIsType,  Error :lambdaFormation_alt,  unionElimination equalityElimination productElimination independent_isectElimination lessCases axiomSqEquality Error :isect_memberEquality_alt,  independent_pairFormation voidElimination imageMemberEquality baseClosed imageElimination independent_functionElimination productEquality applyEquality Error :dependent_set_memberEquality_alt,  dependent_functionElimination addEquality Error :universeIsType,  minusEquality equalityTransitivity equalitySymmetry Error :productIsType,  Error :equalityIsType1,  Error :functionIsType,  Error :dependent_pairFormation_alt,  promote_hyp instantiate cumulativity axiomEquality universeEquality

Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].  \mforall{}[par:P].
\mforall{}[w:pW  par].
    (param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;w)  \mmember{}  n:\mBbbN{}
      {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]))
      {}\mrightarrow{}  pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])
      {}\mrightarrow{}  \mBbbP{})



Date html generated: 2019_06_20-PM-00_35_53
Last ObjectModification: 2018_10_07-PM-09_42_48

Theory : co-recursion


Home Index