Nuprl Lemma : pcw-steprel_wf
∀[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P].
∀[s1,s2:pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])].
  (StepRel(s1;s2) ∈ ℙ)
Proof
Definitions occuring in Statement : 
pcw-steprel: StepRel(s1;s2)
, 
pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pcw-steprel: StepRel(s1;s2)
, 
pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b])
, 
spreadn: spread3, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
ext-family: F ≡ G
, 
all: ∀x:A. B[x]
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
pi1: fst(t)
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
param-co-W-ext, 
unit_wf2, 
pcw-step-agree_wf, 
true_wf, 
equal_wf, 
pcw-step_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis_subsumption, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
dependent_functionElimination, 
hypothesis, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
lambdaFormation, 
unionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].
\mforall{}[s1,s2:pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])].
    (StepRel(s1;s2)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-00_35_35
Last ObjectModification:
2018_08_21-PM-01_53_32
Theory : co-recursion
Home
Index