Nuprl Lemma : pcw-step-agree_wf

[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P].
[s:pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])]. ∀[p1:P]. ∀[w:pco-W p1].
  (StepAgree(s;p1;w) ∈ ℙ)


Proof




Definitions occuring in Statement :  pcw-step-agree: StepAgree(s;p1;w) pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) param-co-W: pco-W uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pcw-step-agree: StepAgree(s;p1;w) pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) spreadn: spread3 prop: and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s1;s2;s3] so_apply: x[s1;s2] so_apply: x[s] so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_lambda: so_lambda(x,y,z.t[x; y; z])
Lemmas referenced :  param-co-W_wf equal_wf subtype_rel_self subtype_rel_wf pcw-step_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule productElimination productEquality cumulativity applyEquality functionExtensionality equalityTransitivity equalitySymmetry because_Cache hyp_replacement applyLambdaEquality axiomEquality isect_memberEquality lambdaEquality functionEquality universeEquality

Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].
\mforall{}[s:pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])].  \mforall{}[p1:P].  \mforall{}[w:pco-W  p1].
    (StepAgree(s;p1;w)  \mmember{}  \mBbbP{})



Date html generated: 2017_04_14-AM-07_41_58
Last ObjectModification: 2017_02_27-PM-03_13_39

Theory : co-recursion


Home Index