Nuprl Lemma : W_ind_wf
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[Q:W(A;a.B[a]) ⟶ ℙ].
∀[F:∀a:A. ∀f:B[a] ⟶ W(A;a.B[a]).  ((∀b:B[a]. Q[f b]) 
⇒ Q[Wsup(a;f)])]. ∀[w:W(A;a.B[a])].
  (W_ind(F;w) ∈ Q[w])
Proof
Definitions occuring in Statement : 
W_ind: W_ind(F;w)
, 
Wsup: Wsup(a;b)
, 
W: W(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
W-induction1-extract, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
W_ind: W_ind(F;w)
, 
genrec-ap: genrec-ap
Lemmas referenced : 
W-induction1-extract, 
isect_wf, 
W_wf, 
subtype_rel_self, 
Wsup_wf, 
equal_wf, 
all_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
instantiate, 
extract_by_obid, 
hypothesis, 
isect_memberFormation, 
introduction, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
thin, 
sqequalHypSubstitution, 
functionEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
isectEquality, 
functionExtensionality, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[Q:W(A;a.B[a])  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[F:\mforall{}a:A.  \mforall{}f:B[a]  {}\mrightarrow{}  W(A;a.B[a]).
                                                                                                                ((\mforall{}b:B[a].  Q[f  b])  {}\mRightarrow{}  Q[Wsup(a;f)])].
\mforall{}[w:W(A;a.B[a])].
    (W\_ind(F;w)  \mmember{}  Q[w])
Date html generated:
2018_05_21-PM-00_05_39
Last ObjectModification:
2018_05_19-AM-07_00_38
Theory : co-recursion
Home
Index