Nuprl Lemma : W_ind_wf

[A:Type]. ∀[B:A ⟶ Type]. ∀[Q:W(A;a.B[a]) ⟶ ℙ].
[F:∀a:A. ∀f:B[a] ⟶ W(A;a.B[a]).  ((∀b:B[a]. Q[f b])  Q[Wsup(a;f)])]. ∀[w:W(A;a.B[a])].
  (W_ind(F;w) ∈ Q[w])


Proof




Definitions occuring in Statement :  W_ind: W_ind(F;w) Wsup: Wsup(a;b) W: W(A;a.B[a]) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T W-induction1-extract uall: [x:A]. B[x] subtype_rel: A ⊆B all: x:A. B[x] implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] prop: W_ind: W_ind(F;w) genrec-ap: genrec-ap
Lemmas referenced :  W-induction1-extract isect_wf W_wf subtype_rel_self Wsup_wf equal_wf all_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity instantiate extract_by_obid hypothesis isect_memberFormation introduction applyEquality sqequalRule lambdaEquality isectElimination hypothesisEquality equalityTransitivity equalitySymmetry thin sqequalHypSubstitution functionEquality cumulativity universeEquality because_Cache lambdaFormation dependent_functionElimination independent_functionElimination isectEquality functionExtensionality axiomEquality isect_memberEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[Q:W(A;a.B[a])  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[F:\mforall{}a:A.  \mforall{}f:B[a]  {}\mrightarrow{}  W(A;a.B[a]).
                                                                                                                ((\mforall{}b:B[a].  Q[f  b])  {}\mRightarrow{}  Q[Wsup(a;f)])].
\mforall{}[w:W(A;a.B[a])].
    (W\_ind(F;w)  \mmember{}  Q[w])



Date html generated: 2018_05_21-PM-00_05_39
Last ObjectModification: 2018_05_19-AM-07_00_38

Theory : co-recursion


Home Index