Nuprl Lemma : fix_wf_coW
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[G:⋂W:𝕌'. (W ⟶ (a:A × (B[a] ⟶ W)))].  (fix(G) ∈ coW(A;a.B[a]))
Proof
Definitions occuring in Statement : 
coW: coW(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
fix: fix(F)
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
and: P ∧ Q
, 
ext-eq: A ≡ B
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
coW-corec, 
fix_wf_corec-alt-proof
Rules used in proof : 
productElimination, 
because_Cache, 
isect_memberEquality, 
isectEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
hypothesis, 
universeEquality, 
applyEquality, 
cumulativity, 
functionEquality, 
hypothesisEquality, 
productEquality, 
lambdaEquality, 
sqequalRule, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
instantiate, 
thin, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[G:\mcap{}W:\mBbbU{}'.  (W  {}\mrightarrow{}  (a:A  \mtimes{}  (B[a]  {}\mrightarrow{}  W)))].    (fix(G)  \mmember{}  coW(A;a.B[a]))
Date html generated:
2018_07_29-AM-09_21_30
Last ObjectModification:
2018_07_27-PM-03_53_01
Theory : co-recursion
Home
Index