Nuprl Lemma : fix_wf_coW

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[G:⋂W:𝕌'. (W ⟶ (a:A × (B[a] ⟶ W)))].  (fix(G) ∈ coW(A;a.B[a]))


Proof




Definitions occuring in Statement :  coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T fix: fix(F) isect: x:A. B[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  and: P ∧ Q ext-eq: A ≡ B subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  coW-corec fix_wf_corec-alt-proof
Rules used in proof :  productElimination because_Cache isect_memberEquality isectEquality equalitySymmetry equalityTransitivity axiomEquality hypothesis universeEquality applyEquality cumulativity functionEquality hypothesisEquality productEquality lambdaEquality sqequalRule isectElimination sqequalHypSubstitution extract_by_obid instantiate thin cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[G:\mcap{}W:\mBbbU{}'.  (W  {}\mrightarrow{}  (a:A  \mtimes{}  (B[a]  {}\mrightarrow{}  W)))].    (fix(G)  \mmember{}  coW(A;a.B[a]))



Date html generated: 2018_07_29-AM-09_21_30
Last ObjectModification: 2018_07_27-PM-03_53_01

Theory : co-recursion


Home Index