Nuprl Lemma : indexed-F-bisimulation_wf

[I:Type]. ∀[F:Type ⟶ Type]. ∀[R:(I ⟶ corec(T.F[T])) ⟶ (I ⟶ corec(T.F[T])) ⟶ ℙ].
  x,y.R[x;y] is an T.F[T]-bisimulation (indexed I) ∈ ℙsupposing ContinuousMonotone(T.F[T])


Proof




Definitions occuring in Statement :  indexed-F-bisimulation: x,y.R[x; y] is an T.F[T]-bisimulation (indexed I) corec: corec(T.F[T]) continuous-monotone: ContinuousMonotone(T.F[T]) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] indexed-F-bisimulation: x,y.R[x; y] is an T.F[T]-bisimulation (indexed I) implies:  Q prop: and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s1;s2] guard: {T} continuous-monotone: ContinuousMonotone(T.F[T]) type-monotone: Monotone(T.F[T]) type-continuous: Continuous(T.F[T])
Lemmas referenced :  corec-ext all_wf subtype_rel_wf corec_wf subtype_rel_self equal_wf subtype_rel_transitivity subtype_rel_weakening continuous-monotone_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality applyEquality hypothesisEquality universeEquality independent_isectElimination hypothesis instantiate functionEquality productEquality functionExtensionality because_Cache cumulativity productElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[I:Type].  \mforall{}[F:Type  {}\mrightarrow{}  Type].  \mforall{}[R:(I  {}\mrightarrow{}  corec(T.F[T]))  {}\mrightarrow{}  (I  {}\mrightarrow{}  corec(T.F[T]))  {}\mrightarrow{}  \mBbbP{}].
    x,y.R[x;y]  is  an  T.F[T]-bisimulation  (indexed  I)  \mmember{}  \mBbbP{}'  supposing  ContinuousMonotone(T.F[T])



Date html generated: 2019_06_20-PM-00_37_17
Last ObjectModification: 2018_08_01-AM-10_46_04

Theory : co-recursion


Home Index