Step
*
1
1
1
1
1
of Lemma
indexed-coinduction-principle
.....antecedent.....
1. I : Type
2. F : Type ⟶ Type
3. ContinuousMonotone(T.F[T])
4. R : (I ⟶ corec(T.F[T])) ⟶ (I ⟶ corec(T.F[T])) ⟶ ℙ
5. ∀T:Type
(((F[T] ⊆r T) ∧ (corec(T.F[T]) ⊆r T))
⇒ (∀x,y:I ⟶ corec(T.F[T]). (R[x;y]
⇒ (x = y ∈ (I ⟶ T))))
⇒ (∀x,y:I ⟶ corec(T.F[T]). (R[x;y]
⇒ (x = y ∈ (I ⟶ F[T])))))
6. n : ℤ
7. ¬n < 1
8. 0 < n
9. ∀[x,y:I ⟶ corec(T.F[T])]. x = y ∈ (I ⟶ primrec(n - 1;Top;λ,T. F[T])) supposing R[x;y]
10. x : I ⟶ corec(T.F[T])
11. y : I ⟶ corec(T.F[T])
12. R[x;y]
13. i : I
⊢ (F[primrec(n - 1;Top;λ,T. F[T])] ⊆r primrec(n - 1;Top;λ,T. F[T])) ∧ (corec(T.F[T]) ⊆r primrec(n - 1;Top;λ,T. F[T]))
BY
{ ((GenConcl ⌜(n - 1) = m ∈ ℕ⌝⋅ THENA Auto')
THEN Thin (-1)
THEN NatInd (-1)
THEN Reduce 0
THEN D 0
THEN Try (Complete (Auto))) }
1
1. I : Type
2. F : Type ⟶ Type
3. ContinuousMonotone(T.F[T])
4. R : (I ⟶ corec(T.F[T])) ⟶ (I ⟶ corec(T.F[T])) ⟶ ℙ
5. ∀T:Type
(((F[T] ⊆r T) ∧ (corec(T.F[T]) ⊆r T))
⇒ (∀x,y:I ⟶ corec(T.F[T]). (R[x;y]
⇒ (x = y ∈ (I ⟶ T))))
⇒ (∀x,y:I ⟶ corec(T.F[T]). (R[x;y]
⇒ (x = y ∈ (I ⟶ F[T])))))
6. n : ℤ
7. ¬n < 1
8. 0 < n
9. ∀[x,y:I ⟶ corec(T.F[T])]. x = y ∈ (I ⟶ primrec(n - 1;Top;λ,T. F[T])) supposing R[x;y]
10. x : I ⟶ corec(T.F[T])
11. y : I ⟶ corec(T.F[T])
12. R[x;y]
13. i : I
14. m : ℤ
15. 0 < m
16. (F[primrec(m - 1;Top;λ,T. F[T])] ⊆r primrec(m - 1;Top;λ,T. F[T])) ∧ (corec(T.F[T]) ⊆r primrec(m - 1;Top;λ,T. F[T]))
⊢ F[primrec(m;Top;λ,T. F[T])] ⊆r primrec(m;Top;λ,T. F[T])
Latex:
Latex:
.....antecedent.....
1. I : Type
2. F : Type {}\mrightarrow{} Type
3. ContinuousMonotone(T.F[T])
4. R : (I {}\mrightarrow{} corec(T.F[T])) {}\mrightarrow{} (I {}\mrightarrow{} corec(T.F[T])) {}\mrightarrow{} \mBbbP{}
5. \mforall{}T:Type
(((F[T] \msubseteq{}r T) \mwedge{} (corec(T.F[T]) \msubseteq{}r T))
{}\mRightarrow{} (\mforall{}x,y:I {}\mrightarrow{} corec(T.F[T]). (R[x;y] {}\mRightarrow{} (x = y)))
{}\mRightarrow{} (\mforall{}x,y:I {}\mrightarrow{} corec(T.F[T]). (R[x;y] {}\mRightarrow{} (x = y))))
6. n : \mBbbZ{}
7. \mneg{}n < 1
8. 0 < n
9. \mforall{}[x,y:I {}\mrightarrow{} corec(T.F[T])]. x = y supposing R[x;y]
10. x : I {}\mrightarrow{} corec(T.F[T])
11. y : I {}\mrightarrow{} corec(T.F[T])
12. R[x;y]
13. i : I
\mvdash{} (F[primrec(n - 1;Top;\mlambda{},T. F[T])] \msubseteq{}r primrec(n - 1;Top;\mlambda{},T. F[T]))
\mwedge{} (corec(T.F[T]) \msubseteq{}r primrec(n - 1;Top;\mlambda{},T. F[T]))
By
Latex:
((GenConcl \mkleeneopen{}(n - 1) = m\mkleeneclose{}\mcdot{} THENA Auto')
THEN Thin (-1)
THEN NatInd (-1)
THEN Reduce 0
THEN D 0
THEN Try (Complete (Auto)))
Home
Index