Nuprl Lemma : length-copath-extend

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[p:copath(a.B[a];w)]. ∀[t:Top].
  (copath-length(copath-extend(p;t)) (copath-length(p) 1) ∈ ℤ)


Proof




Definitions occuring in Statement :  copath-length: copath-length(p) copath-extend: copath-extend(q;t) copath: copath(a.B[a];w) coW: coW(A;a.B[a]) uall: [x:A]. B[x] top: Top so_apply: x[s] function: x:A ⟶ B[x] add: m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] nat: pi1: fst(t) copath-extend: copath-extend(q;t) copath-length: copath-length(p) copath: copath(a.B[a];w) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  coW_wf copath_wf top_wf
Rules used in proof :  universeEquality functionEquality cumulativity instantiate applyEquality lambdaEquality because_Cache axiomEquality isectElimination isect_memberEquality extract_by_obid natural_numberEquality hypothesis hypothesisEquality rename setElimination addEquality sqequalRule thin productElimination sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[p:copath(a.B[a];w)].  \mforall{}[t:Top].
    (copath-length(copath-extend(p;t))  =  (copath-length(p)  +  1))



Date html generated: 2018_07_25-PM-01_40_12
Last ObjectModification: 2018_07_24-PM-05_40_26

Theory : co-recursion


Home Index