Step * 1 of Lemma pW-rec_wf


1. Type
2. P ⟶ Type
3. p:P ⟶ A[p] ⟶ Type
4. p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P
5. pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]) ∈ Type
6. pW ∈ P ⟶ Type
7. par:P ⟶ (pW par) ⟶ ℙ
8. ind par:P
⟶ a:A[par]
⟶ f:(b:B[par;a] ⟶ (pW C[par;a;b]))
⟶ (b:B[par;a] ⟶ Q[C[par;a;b];f b])
⟶ Q[par;pW-sup(a;f)]
9. par P
10. pW par
11. param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;w) ∈ n:ℕ
    ⟶ (ℕn ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]))
    ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])
    ⟶ ℙ
12. ∀[pp:n:ℕ × (ℕn ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]))]. (Barred(pp) ∈ ℙ)
13. alpha : ℕ ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])
14. ∀n:ℕ(param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;w) alpha (alpha n))
⊢ ↓∃n:ℕBarred(<n, alpha>)
BY
((((RepUR ``param-W`` 10⋅ THEN 10⋅THEN Unhide) THEN Auto) THEN Fold `pcw-partial` THEN BackThruSomeHyp) }

1
.....wf..... 
1. Type
2. P ⟶ Type
3. p:P ⟶ A[p] ⟶ Type
4. p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P
5. pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]) ∈ Type
6. pW ∈ P ⟶ Type
7. par:P ⟶ (pW par) ⟶ ℙ
8. ind par:P
⟶ a:A[par]
⟶ f:(b:B[par;a] ⟶ (pW C[par;a;b]))
⟶ (b:B[par;a] ⟶ Q[C[par;a;b];f b])
⟶ Q[par;pW-sup(a;f)]
9. par P
10. pco-W par
11. ∀path:Path. (StepAgree(path 0;par;w)  (↓∃n:ℕBarred(pcw-partial(path;n))))
12. param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;w) ∈ n:ℕ
    ⟶ (ℕn ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]))
    ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])
    ⟶ ℙ
13. ∀[pp:n:ℕ × (ℕn ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]))]. (Barred(pp) ∈ ℙ)
14. alpha : ℕ ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])
15. ∀n:ℕ(param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;w) alpha (alpha n))
⊢ alpha ∈ Path

2
1. Type
2. P ⟶ Type
3. p:P ⟶ A[p] ⟶ Type
4. p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P
5. pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]) ∈ Type
6. pW ∈ P ⟶ Type
7. par:P ⟶ (pW par) ⟶ ℙ
8. ind par:P
⟶ a:A[par]
⟶ f:(b:B[par;a] ⟶ (pW C[par;a;b]))
⟶ (b:B[par;a] ⟶ Q[C[par;a;b];f b])
⟶ Q[par;pW-sup(a;f)]
9. par P
10. pco-W par
11. ∀path:Path. (StepAgree(path 0;par;w)  (↓∃n:ℕBarred(pcw-partial(path;n))))
12. param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;w) ∈ n:ℕ
    ⟶ (ℕn ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]))
    ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])
    ⟶ ℙ
13. ∀[pp:n:ℕ × (ℕn ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]))]. (Barred(pp) ∈ ℙ)
14. alpha : ℕ ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])
15. ∀n:ℕ(param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;w) alpha (alpha n))
⊢ StepAgree(alpha 0;par;w)


Latex:


Latex:

1.  P  :  Type
2.  A  :  P  {}\mrightarrow{}  Type
3.  B  :  p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type
4.  C  :  p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P
5.  pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])  \mmember{}  Type
6.  pW  \mmember{}  P  {}\mrightarrow{}  Type
7.  Q  :  par:P  {}\mrightarrow{}  (pW  par)  {}\mrightarrow{}  \mBbbP{}
8.  ind  :  par:P
{}\mrightarrow{}  a:A[par]
{}\mrightarrow{}  f:(b:B[par;a]  {}\mrightarrow{}  (pW  C[par;a;b]))
{}\mrightarrow{}  (b:B[par;a]  {}\mrightarrow{}  Q[C[par;a;b];f  b])
{}\mrightarrow{}  Q[par;pW-sup(a;f)]
9.  par  :  P
10.  w  :  pW  par
11.  param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;w)  \mmember{}  n:\mBbbN{}
        {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]))
        {}\mrightarrow{}  pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])
        {}\mrightarrow{}  \mBbbP{}
12.  \mforall{}[pp:n:\mBbbN{}  \mtimes{}  (\mBbbN{}n  {}\mrightarrow{}  pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]))].  (Barred(pp)  \mmember{}  \mBbbP{})
13.  alpha  :  \mBbbN{}  {}\mrightarrow{}  pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])
14.  \mforall{}n:\mBbbN{}.  (param-W-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];par;w)  n  alpha  (alpha  n))
\mvdash{}  \mdownarrow{}\mexists{}n:\mBbbN{}.  Barred(<n,  alpha>)


By


Latex:
((((RepUR  ``param-W``  10\mcdot{}  THEN  D  10\mcdot{})  THEN  Unhide)  THEN  Auto)
  THEN  Fold  `pcw-partial`  0
  THEN  BackThruSomeHyp)




Home Index