Step * 3 of Lemma sqeq-copath5


1. Base
2. Base
3. (m 1)↓
⊢ 1 ≤ (m 1) 1
BY
(All(RepUR ``subtract``)
   THEN HasValueD (-1)
   THEN (Assert ⌜(m (-(n (-1))))↓⌝⋅ THENA Auto)
   THEN HasValueD (-1)
   THEN (Assert ⌜(-(n (-1)))↓⌝⋅ THENA Auto)
   THEN HasValueD (-1)
   THEN (Assert ⌜(n (-1))↓⌝⋅ THENA Auto)
   THEN HasValueD (-1)) }

1
1. Base
2. Base
3. ((m (-(n (-1)))) (-1))↓
4. (-(n (-1))) ∈ ℤ
5. -1 ∈ ℤ
6. (m (-(n (-1))))↓
7. m ∈ ℤ
8. -(n (-1)) ∈ ℤ
9. (-(n (-1)))↓
10. (-1) ∈ ℤ
11. (n (-1))↓
12. n ∈ ℤ
13. -1 ∈ ℤ
⊢ (m (-(n (-1)))) (-1) ≤ ((m 1) (-n)) (-1)


Latex:


Latex:

1.  n  :  Base
2.  m  :  Base
3.  (m  -  n  -  1  -  1)\mdownarrow{}
\mvdash{}  m  -  n  -  1  -  1  \mleq{}  (m  +  1)  -  n  -  1


By


Latex:
(All(RepUR  ``subtract``)
  THEN  HasValueD  (-1)
  THEN  (Assert  \mkleeneopen{}(m  +  (-(n  +  (-1))))\mdownarrow{}\mkleeneclose{}\mcdot{}  THENA  Auto)
  THEN  HasValueD  (-1)
  THEN  (Assert  \mkleeneopen{}(-(n  +  (-1)))\mdownarrow{}\mkleeneclose{}\mcdot{}  THENA  Auto)
  THEN  HasValueD  (-1)
  THEN  (Assert  \mkleeneopen{}(n  +  (-1))\mdownarrow{}\mkleeneclose{}\mcdot{}  THENA  Auto)
  THEN  HasValueD  (-1))




Home Index