Step
*
1
1
1
1
1
of Lemma
stream-coinduction
.....wf.....
1. A : Type
2. R : stream(A) ⟶ stream(A) ⟶ ℙ
3. ∀x,y:stream(A). ((x R y)
⇒ ((s-hd(x) = s-hd(y) ∈ A) ∧ (s-tl(x) R s-tl(y))))
4. x : stream(A)
5. y : stream(A)
6. x R y
7. T : Type
8. (A × T) ⊆r T
9. stream(A) ⊆r T
10. ∀x,y:stream(A). (R[x;y]
⇒ (x = y ∈ T))
11. x1 : stream(A)
12. y1 : stream(A)
13. R[x1;y1]
⊢ x1 ∈ A × T
BY
{ (InstLemma `stream-ext` [⌜A⌝]⋅ THEN Auto THEN DoSubsume THEN Auto) }
Latex:
Latex:
.....wf.....
1. A : Type
2. R : stream(A) {}\mrightarrow{} stream(A) {}\mrightarrow{} \mBbbP{}
3. \mforall{}x,y:stream(A). ((x R y) {}\mRightarrow{} ((s-hd(x) = s-hd(y)) \mwedge{} (s-tl(x) R s-tl(y))))
4. x : stream(A)
5. y : stream(A)
6. x R y
7. T : Type
8. (A \mtimes{} T) \msubseteq{}r T
9. stream(A) \msubseteq{}r T
10. \mforall{}x,y:stream(A). (R[x;y] {}\mRightarrow{} (x = y))
11. x1 : stream(A)
12. y1 : stream(A)
13. R[x1;y1]
\mvdash{} x1 \mmember{} A \mtimes{} T
By
Latex:
(InstLemma `stream-ext` [\mkleeneopen{}A\mkleeneclose{}]\mcdot{} THEN Auto THEN DoSubsume THEN Auto)
Home
Index