Nuprl Lemma : cbv_sqle

[a,X,Y:Base].  eval in X[x] ≤ eval in Y[x] supposing (a)↓  (X[a] ≤ Y[a])


Proof




Definitions occuring in Statement :  has-value: (a)↓ callbyvalue: callbyvalue uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] implies:  Q base: Base sqle: s ≤ t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a has-value: (a)↓ implies:  Q prop:
Lemmas referenced :  base_wf sqle_wf_base is-exception_wf has-value_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut divergentSqle callbyvalueCallbyvalue sqequalHypSubstitution hypothesis sqequalRule callbyvalueReduce independent_functionElimination thin callbyvalueExceptionCases axiomSqleEquality exceptionSqequal sqleReflexivity baseApply closedConclusion baseClosed hypothesisEquality lemma_by_obid isectElimination functionEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a,X,Y:Base].    eval  x  =  a  in  X[x]  \mleq{}  eval  x  =  a  in  Y[x]  supposing  (a)\mdownarrow{}  {}\mRightarrow{}  (X[a]  \mleq{}  Y[a])



Date html generated: 2016_05_13-PM-03_45_45
Last ObjectModification: 2016_01_14-PM-07_06_40

Theory : computation


Home Index