Nuprl Lemma : cbv_sqle
∀[a,X,Y:Base].  eval x = a in X[x] ≤ eval x = a in Y[x] supposing (a)↓ 
⇒ (X[a] ≤ Y[a])
Proof
Definitions occuring in Statement : 
has-value: (a)↓
, 
callbyvalue: callbyvalue, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
base: Base
, 
sqle: s ≤ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
has-value: (a)↓
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
base_wf, 
sqle_wf_base, 
is-exception_wf, 
has-value_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
divergentSqle, 
callbyvalueCallbyvalue, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
callbyvalueReduce, 
independent_functionElimination, 
thin, 
callbyvalueExceptionCases, 
axiomSqleEquality, 
exceptionSqequal, 
sqleReflexivity, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
lemma_by_obid, 
isectElimination, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a,X,Y:Base].    eval  x  =  a  in  X[x]  \mleq{}  eval  x  =  a  in  Y[x]  supposing  (a)\mdownarrow{}  {}\mRightarrow{}  (X[a]  \mleq{}  Y[a])
Date html generated:
2016_05_13-PM-03_45_45
Last ObjectModification:
2016_01_14-PM-07_06_40
Theory : computation
Home
Index