Nuprl Lemma : lifting-strict-callbyvalue

[F:Base]. ∀[p,q,r:Top].  ∀[a,B:Top].  (F[eval in B[x];p;q;r] eval in F[B[x];p;q;r]) supposing strict4(λx,\000Cy,z,w. F[x;y;z;w])


Proof




Definitions occuring in Statement :  strict4: strict4(F) callbyvalue: callbyvalue uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s1;s2;s3;s4] so_apply: x[s] lambda: λx.A[x] base: Base sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a strict4: strict4(F) and: P ∧ Q cand: c∧ B all: x:A. B[x] implies:  Q has-value: (a)↓ squash: T or: P ∨ Q prop:
Lemmas referenced :  base_wf strict4_wf top_wf is-exception_wf has-value_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalSqle sqleRule thin divergentSqle sqequalHypSubstitution sqequalRule productElimination hypothesis dependent_functionElimination baseApply closedConclusion baseClosed hypothesisEquality independent_functionElimination callbyvalueCallbyvalue callbyvalueReduce sqleReflexivity lemma_by_obid isectElimination imageElimination unionElimination axiomSqleEquality callbyvalueExceptionCases exceptionSqequal sqequalAxiom isect_memberEquality because_Cache equalityTransitivity equalitySymmetry

Latex:
\mforall{}[F:Base].  \mforall{}[p,q,r:Top].
    \mforall{}[a,B:Top].    (F[eval  x  =  a  in  B[x];p;q;r]  \msim{}  eval  x  =  a  in  F[B[x];p;q;r])  supposing  strict4(\mlambda{}x,y,z,\000Cw.  F[x;y;z;w])



Date html generated: 2016_05_13-PM-03_41_52
Last ObjectModification: 2016_01_14-PM-07_08_58

Theory : computation


Home Index