Nuprl Lemma : lifting-strict-isaxiom
∀[F:Base]. ∀[p,q,r:Top].
  ∀[a,b,c:Top].  (F[if a = Ax then b otherwise c;p;q;r] ~ if a = Ax then F[b;p;q;r] otherwise F[c;p;q;r]) 
  supposing strict4(λx,y,z,w. F[x;y;z;w])
Proof
Definitions occuring in Statement : 
strict4: strict4(F)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2;s3;s4]
, 
isaxiom: if z = Ax then a otherwise b
, 
lambda: λx.A[x]
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
strict4: strict4(F)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
or: P ∨ Q
, 
top: Top
, 
squash: ↓T
, 
prop: ℙ
Lemmas referenced : 
base_wf, 
strict4_wf, 
top_wf, 
is-exception_wf, 
has-value_wf_base, 
has-value-implies-dec-isaxiom-2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalSqle, 
sqleRule, 
thin, 
divergentSqle, 
sqequalHypSubstitution, 
sqequalRule, 
productElimination, 
hypothesis, 
dependent_functionElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
independent_functionElimination, 
callbyvalueIsaxiom, 
lemma_by_obid, 
unionElimination, 
sqleReflexivity, 
lambdaFormation, 
because_Cache, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
axiomSqleEquality, 
isaxiomExceptionCases, 
exceptionSqequal, 
isectElimination, 
sqequalAxiom, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[F:Base].  \mforall{}[p,q,r:Top].
    \mforall{}[a,b,c:Top].
        (F[if  a  =  Ax  then  b  otherwise  c;p;q;r]  \msim{}  if  a  =  Ax  then  F[b;p;q;r]  otherwise  F[c;p;q;r]) 
    supposing  strict4(\mlambda{}x,y,z,w.  F[x;y;z;w])
Date html generated:
2016_05_13-PM-03_41_35
Last ObjectModification:
2016_01_14-PM-07_08_59
Theory : computation
Home
Index