Nuprl Lemma : lifting-strict-spread
∀[F:Base]. ∀[p,q,r:Top].
  ∀[a,B:Top].  (F[let x,y = a in B[x;y];p;q;r] ~ let x,y = a in F[B[x;y];p;q;r]) supposing strict4(λx,y,z,w. F[x;y;z;w])
Proof
Definitions occuring in Statement : 
strict4: strict4(F)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2;s3;s4]
, 
so_apply: x[s1;s2]
, 
lambda: λx.A[x]
, 
spread: spread def, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
strict4: strict4(F)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
prop: ℙ
, 
squash: ↓T
, 
or: P ∨ Q
Lemmas referenced : 
top_wf, 
equal_wf, 
pair-eta, 
has-value_wf_base, 
is-exception_wf, 
strict4_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalSqle, 
sqleRule, 
thin, 
divergentSqle, 
sqequalHypSubstitution, 
sqequalRule, 
productElimination, 
hypothesis, 
dependent_functionElimination, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
independent_functionElimination, 
callbyvalueSpread, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
extract_by_obid, 
lambdaFormation, 
sqleReflexivity, 
isectElimination, 
imageElimination, 
unionElimination, 
axiomSqleEquality, 
spreadExceptionCases, 
exceptionSqequal, 
sqequalAxiom, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[F:Base].  \mforall{}[p,q,r:Top].
    \mforall{}[a,B:Top].    (F[let  x,y  =  a  in  B[x;y];p;q;r]  \msim{}  let  x,y  =  a  in  F[B[x;y];p;q;r]) 
    supposing  strict4(\mlambda{}x,y,z,w.  F[x;y;z;w])
Date html generated:
2017_04_14-AM-07_20_50
Last ObjectModification:
2017_02_27-PM-02_54_19
Theory : computation
Home
Index