Nuprl Lemma : normalize-decide-right
∀[a,F,G:Top].  (case a of inl(x) => F[x] | inr(x) => G[x] a ~ case a of inl(x) => F[x] | inr(x) => G[x] (inr x ))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
apply: f a
, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
inr: inr x 
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
has-value: (a)↓
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
Lemmas referenced : 
assert_of_bnot, 
eqff_to_assert, 
is-exception_wf, 
has-value_wf_base, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
top_wf, 
isl_wf, 
injection-eta
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalSqle, 
sqleRule, 
thin, 
divergentSqle, 
callbyvalueDecide, 
sqequalHypSubstitution, 
hypothesis, 
lemma_by_obid, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
because_Cache, 
unionElimination, 
instantiate, 
cumulativity, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
sqequalRule, 
sqleReflexivity, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
decideExceptionCases, 
axiomSqleEquality, 
exceptionSqequal, 
sqequalAxiom, 
isect_memberEquality
Latex:
\mforall{}[a,F,G:Top].
    (case  a  of  inl(x)  =>  F[x]  |  inr(x)  =>  G[x]  a  \msim{}  case  a  of  inl(x)  =>  F[x]  |  inr(x)  =>  G[x]  (inr  x  ))
Date html generated:
2016_05_13-PM-03_43_19
Last ObjectModification:
2016_01_14-PM-07_08_09
Theory : computation
Home
Index