Nuprl Lemma : strictness-atom1_eq-right
∀[a,b,c:Top]. (if a=1 ⊥ then b else c ~ eval x = a in ⊥)
Proof
Definitions occuring in Statement :
bottom: ⊥
,
callbyvalue: callbyvalue,
atom_eq: atomeqn def,
uall: ∀[x:A]. B[x]
,
top: Top
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
has-value: (a)↓
,
and: P ∧ Q
,
not: ¬A
,
implies: P
⇒ Q
,
uimplies: b supposing a
,
false: False
Lemmas referenced :
top_wf,
is-exception_wf,
has-value_wf_base,
exception-not-bottom,
value-type-has-value,
bottom_diverge
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalSqle,
sqleRule,
thin,
divergentSqle,
callbyvalueAtomnEq,
sqequalHypSubstitution,
hypothesis,
sqequalRule,
baseApply,
closedConclusion,
baseClosed,
hypothesisEquality,
productElimination,
lemma_by_obid,
independent_functionElimination,
isectElimination,
because_Cache,
independent_isectElimination,
equalityTransitivity,
equalitySymmetry,
voidElimination,
atom1_eqExceptionCases,
axiomSqleEquality,
exceptionSqequal,
sqleReflexivity,
callbyvalueCallbyvalue,
callbyvalueReduce,
callbyvalueExceptionCases,
sqequalAxiom,
isect_memberEquality
Latex:
\mforall{}[a,b,c:Top]. (if a=1 \mbot{} then b else c \msim{} eval x = a in \mbot{})
Date html generated:
2016_05_13-PM-03_44_18
Last ObjectModification:
2016_01_14-PM-07_07_16
Theory : computation
Home
Index