Step
*
1
1
1
1
2
2
1
of Lemma
CCC-omni
1. K : Type
2. K ⊆r ℕ
3. k : K
4. P : K ⟶ ℙ
5. ∀k:K. Dec(P[k])
6. WD(K)
7. ∃n:K. ∀m:K. (n ≤ m)
8. ∀n:K. ∀k:ℕn + 1. Dec(k ∈ K)
9. ∀n:K. Dec(∀k:K. ((k ≤ n)
⇒ (¬P[k])))
10. g : ℕ ⟶ K
11. ¬P[g k]
12. ¬(∀k@0:K. ((k@0 ≤ (g k))
⇒ (¬P[k@0])))
13. Dec(∃k@0:K. ((k@0 ≤ (g k)) ∧ P[k@0]))
⊢ ∃n:ℕ. ((n ∈ K) ∧ ((∃k:K. ((k ≤ n) ∧ P[k])) ∨ (∀k:K. ((k ≤ (g n))
⇒ (¬P[k])))))
BY
{ D -1 }
1
1. K : Type
2. K ⊆r ℕ
3. k : K
4. P : K ⟶ ℙ
5. ∀k:K. Dec(P[k])
6. WD(K)
7. ∃n:K. ∀m:K. (n ≤ m)
8. ∀n:K. ∀k:ℕn + 1. Dec(k ∈ K)
9. ∀n:K. Dec(∀k:K. ((k ≤ n)
⇒ (¬P[k])))
10. g : ℕ ⟶ K
11. ¬P[g k]
12. ¬(∀k@0:K. ((k@0 ≤ (g k))
⇒ (¬P[k@0])))
13. ∃k@0:K. ((k@0 ≤ (g k)) ∧ P[k@0])
⊢ ∃n:ℕ. ((n ∈ K) ∧ ((∃k:K. ((k ≤ n) ∧ P[k])) ∨ (∀k:K. ((k ≤ (g n))
⇒ (¬P[k])))))
2
1. K : Type
2. K ⊆r ℕ
3. k : K
4. P : K ⟶ ℙ
5. ∀k:K. Dec(P[k])
6. WD(K)
7. ∃n:K. ∀m:K. (n ≤ m)
8. ∀n:K. ∀k:ℕn + 1. Dec(k ∈ K)
9. ∀n:K. Dec(∀k:K. ((k ≤ n)
⇒ (¬P[k])))
10. g : ℕ ⟶ K
11. ¬P[g k]
12. ¬(∀k@0:K. ((k@0 ≤ (g k))
⇒ (¬P[k@0])))
13. ¬(∃k@0:K. ((k@0 ≤ (g k)) ∧ P[k@0]))
⊢ ∃n:ℕ. ((n ∈ K) ∧ ((∃k:K. ((k ≤ n) ∧ P[k])) ∨ (∀k:K. ((k ≤ (g n))
⇒ (¬P[k])))))
Latex:
Latex:
1. K : Type
2. K \msubseteq{}r \mBbbN{}
3. k : K
4. P : K {}\mrightarrow{} \mBbbP{}
5. \mforall{}k:K. Dec(P[k])
6. WD(K)
7. \mexists{}n:K. \mforall{}m:K. (n \mleq{} m)
8. \mforall{}n:K. \mforall{}k:\mBbbN{}n + 1. Dec(k \mmember{} K)
9. \mforall{}n:K. Dec(\mforall{}k:K. ((k \mleq{} n) {}\mRightarrow{} (\mneg{}P[k])))
10. g : \mBbbN{} {}\mrightarrow{} K
11. \mneg{}P[g k]
12. \mneg{}(\mforall{}k@0:K. ((k@0 \mleq{} (g k)) {}\mRightarrow{} (\mneg{}P[k@0])))
13. Dec(\mexists{}k@0:K. ((k@0 \mleq{} (g k)) \mwedge{} P[k@0]))
\mvdash{} \mexists{}n:\mBbbN{}. ((n \mmember{} K) \mwedge{} ((\mexists{}k:K. ((k \mleq{} n) \mwedge{} P[k])) \mvee{} (\mforall{}k:K. ((k \mleq{} (g n)) {}\mRightarrow{} (\mneg{}P[k])))))
By
Latex:
D -1
Home
Index