Step
*
1
1
3
of Lemma
Ramsey-n-3
1. n : ℕ
2. N : ℕ+
3. g : ℕN ⟶ ℕN ⟶ ℕn
4. f : ℕ3 ⟶ ℕN
5. ∀a1,a2:ℕ3. (((f a1) = (f a2) ∈ ℕN)
⇒ (a1 = a2 ∈ ℕ3))
6. ∀a,b,c,d:ℕ3. (f a < f b
⇒ f c < f d
⇒ ((g (f a) (f b)) = (g (f c) (f d)) ∈ ℤ))
7. f 0 < f 1
8. f 2 < f 0
9. f 1 < f 2
⊢ ∃i,j,k:ℕN. (i < j ∧ j < k ∧ ((g i j) = (g i k) ∈ ℤ) ∧ ((g i k) = (g j k) ∈ ℤ))
BY
{ (Assert ⌜False⌝⋅ THEN Auto) }
Latex:
Latex:
1. n : \mBbbN{}
2. N : \mBbbN{}\msupplus{}
3. g : \mBbbN{}N {}\mrightarrow{} \mBbbN{}N {}\mrightarrow{} \mBbbN{}n
4. f : \mBbbN{}3 {}\mrightarrow{} \mBbbN{}N
5. \mforall{}a1,a2:\mBbbN{}3. (((f a1) = (f a2)) {}\mRightarrow{} (a1 = a2))
6. \mforall{}a,b,c,d:\mBbbN{}3. (f a < f b {}\mRightarrow{} f c < f d {}\mRightarrow{} ((g (f a) (f b)) = (g (f c) (f d))))
7. f 0 < f 1
8. f 2 < f 0
9. f 1 < f 2
\mvdash{} \mexists{}i,j,k:\mBbbN{}N. (i < j \mwedge{} j < k \mwedge{} ((g i j) = (g i k)) \mwedge{} ((g i k) = (g j k)))
By
Latex:
(Assert \mkleeneopen{}False\mkleeneclose{}\mcdot{} THEN Auto)
Home
Index