Step
*
1
1
1
of Lemma
all-quotient-true3
1. T : Type@i'
2. f : T ⟶ Base@i
3. ∀x:T. ((f x) = x ∈ T)@i
4. P : T ⟶ ℙ@i'
5. ∀t:T ⋂ Base. ⇃(P[t])
⇐⇒ ⇃(∀t:T ⋂ Base. P[t])
6. ∀t:T. ⇃(P[t])@i
⊢ ⇃(∀t:T. P[t])
BY
{ ((Assert ⌜∀t:T ⋂ Base. ⇃(P[t])⌝⋅ THENA Auto)
THEN (RWO "-3" (-1) THENA Auto)
THEN RepeatFor 2 (Thin (-2))
THEN (Assert ⌜(∀t:T ⋂ Base. P[t])
⇒ (∀t:T. P[t])⌝⋅ THENM (Auto THEN FLemma `implies-quotient-true` [-1] THEN Auto))
THEN (UnivCD THENA Auto)) }
1
1. T : Type@i'
2. f : T ⟶ Base@i
3. ∀x:T. ((f x) = x ∈ T)@i
4. P : T ⟶ ℙ@i'
5. ⇃(∀t:T ⋂ Base. P[t])
6. ∀t:T ⋂ Base. P[t]@i
7. t : T@i
⊢ P[t]
Latex:
Latex:
1. T : Type@i'
2. f : T {}\mrightarrow{} Base@i
3. \mforall{}x:T. ((f x) = x)@i
4. P : T {}\mrightarrow{} \mBbbP{}@i'
5. \mforall{}t:T \mcap{} Base. \00D9(P[t]) \mLeftarrow{}{}\mRightarrow{} \00D9(\mforall{}t:T \mcap{} Base. P[t])
6. \mforall{}t:T. \00D9(P[t])@i
\mvdash{} \00D9(\mforall{}t:T. P[t])
By
Latex:
((Assert \mkleeneopen{}\mforall{}t:T \mcap{} Base. \00D9(P[t])\mkleeneclose{}\mcdot{} THENA Auto)
THEN (RWO "-3" (-1) THENA Auto)
THEN RepeatFor 2 (Thin (-2))
THEN (Assert \mkleeneopen{}(\mforall{}t:T \mcap{} Base. P[t]) {}\mRightarrow{} (\mforall{}t:T. P[t])\mkleeneclose{}\mcdot{}
THENM (Auto THEN FLemma `implies-quotient-true` [-1] THEN Auto)
)
THEN (UnivCD THENA Auto))
Home
Index