Step
*
1
of Lemma
b-almost-full-intersection-lemma
1. R : ℕ ⟶ ℕ ⟶ ℙ@i'
2. T : ℕ ⟶ ℕ ⟶ ℙ@i'
3. b-almost-full(n,m.R[n;m])@i
4. b-almost-full(n,m.T[n;m])@i
5. s : StrictInc@i
6. s@0 : StrictInc@i
⊢ ⇃(∃n:ℕ. ∃n@0:{(s@0 n) + 1...}. R[s (s@0 n);s n@0])
BY
{ (RenameVar `f' (-1) THEN (D 3 With ⌜s o f⌝ THENA (BLemma `compose-strict-inc` THEN Auto))) }
1
1. R : ℕ ⟶ ℕ ⟶ ℙ@i'
2. T : ℕ ⟶ ℕ ⟶ ℙ@i'
3. b-almost-full(n,m.T[n;m])@i
4. s : StrictInc@i
5. f : StrictInc@i
6. ⇃(∃n:ℕ. ∃m:{n + 1...}. R[(s o f) n;(s o f) m])@i
⊢ ⇃(∃n:ℕ. ∃n@0:{(f n) + 1...}. R[s (f n);s n@0])
Latex:
Latex:
1. R : \mBbbN{} {}\mrightarrow{} \mBbbN{} {}\mrightarrow{} \mBbbP{}@i'
2. T : \mBbbN{} {}\mrightarrow{} \mBbbN{} {}\mrightarrow{} \mBbbP{}@i'
3. b-almost-full(n,m.R[n;m])@i
4. b-almost-full(n,m.T[n;m])@i
5. s : StrictInc@i
6. s@0 : StrictInc@i
\mvdash{} \00D9(\mexists{}n:\mBbbN{}. \mexists{}n@0:\{(s@0 n) + 1...\}. R[s (s@0 n);s n@0])
By
Latex:
(RenameVar `f' (-1) THEN (D 3 With \mkleeneopen{}s o f\mkleeneclose{} THENA (BLemma `compose-strict-inc` THEN Auto)))
Home
Index