Step
*
4
1
of Lemma
b-almost-full-intersection
1. R : ℕ ⟶ ℕ ⟶ ℙ
2. T : ℕ ⟶ ℕ ⟶ ℙ
3. b-almost-full(n,m.R[n;m])
4. b-almost-full(n,m.T[n;m])
5. alpha : StrictInc
6. ⇃(∃m:ℕ. ∃n,p:{m + 1...}. (R[alpha m;alpha n] ∧ T[alpha m;alpha p]))
⊢ ⇃(∃m:ℕ. baf-bar(n,m.R[n;m];n,m.T[n;m];m;alpha))
BY
{ TACTIC:(MoveToConcl (-1) THEN BLemma `implies-quotient-true` THEN Auto) }
1
1. R : ℕ ⟶ ℕ ⟶ ℙ
2. T : ℕ ⟶ ℕ ⟶ ℙ
3. b-almost-full(n,m.R[n;m])
4. b-almost-full(n,m.T[n;m])
5. alpha : StrictInc
6. ∃m:ℕ. ∃n,p:{m + 1...}. (R[alpha m;alpha n] ∧ T[alpha m;alpha p])
⊢ ∃m:ℕ. baf-bar(n,m.R[n;m];n,m.T[n;m];m;alpha)
Latex:
Latex:
1. R : \mBbbN{} {}\mrightarrow{} \mBbbN{} {}\mrightarrow{} \mBbbP{}
2. T : \mBbbN{} {}\mrightarrow{} \mBbbN{} {}\mrightarrow{} \mBbbP{}
3. b-almost-full(n,m.R[n;m])
4. b-almost-full(n,m.T[n;m])
5. alpha : StrictInc
6. \00D9(\mexists{}m:\mBbbN{}. \mexists{}n,p:\{m + 1...\}. (R[alpha m;alpha n] \mwedge{} T[alpha m;alpha p]))
\mvdash{} \00D9(\mexists{}m:\mBbbN{}. baf-bar(n,m.R[n;m];n,m.T[n;m];m;alpha))
By
Latex:
TACTIC:(MoveToConcl (-1) THEN BLemma `implies-quotient-true` THEN Auto)
Home
Index