Step
*
1
2
1
2
of Lemma
basic-implies-strong-continuity2
1. [T] : Type
2. [F] : (ℕ ⟶ T) ⟶ ℕ
3. M : n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ?)
4. ∀f:ℕ ⟶ T. ((↓∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f)))
5. f : ℕ ⟶ T
6. (↓∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f))
⊢ ∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f)
BY
{ Auto }
Latex:
Latex:
1. [T] : Type
2. [F] : (\mBbbN{} {}\mrightarrow{} T) {}\mrightarrow{} \mBbbN{}
3. M : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} T) {}\mrightarrow{} (\mBbbN{}?)
4. \mforall{}f:\mBbbN{} {}\mrightarrow{} T
((\mdownarrow{}\mexists{}n:\mBbbN{}. ((M n f) = (inl (F f)))) \mwedge{} (\mforall{}n:\mBbbN{}. (M n f) = (inl (F f)) supposing \muparrow{}isl(M n f)))
5. f : \mBbbN{} {}\mrightarrow{} T
6. (\mdownarrow{}\mexists{}n:\mBbbN{}. ((M n f) = (inl (F f)))) \mwedge{} (\mforall{}n:\mBbbN{}. (M n f) = (inl (F f)) supposing \muparrow{}isl(M n f))
\mvdash{} \mforall{}n:\mBbbN{}. (M n f) = (inl (F f)) supposing \muparrow{}isl(M n f)
By
Latex:
Auto
Home
Index