Nuprl Definition : basic-strong-continuity
basic-strong-continuity(T;F) ==
∃M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ ⋃ (ℕ × ℕ)) [(∀f:ℕ ⟶ T
((∃n:ℕ. ((M n f) = (F f) ∈ ℕ))
∧ (∀n:ℕ. (M n f) = (F f) ∈ ℕ supposing M n f is an integer)
∧ (∀n,m:ℕ. ((n ≤ m)
⇒ M n f is an integer
⇒ M m f is an integer))))]
Definitions occuring in Statement :
int_seg: {i..j-}
,
nat: ℕ
,
b-union: A ⋃ B
,
uimplies: b supposing a
,
isint: isint def,
le: A ≤ B
,
all: ∀x:A. B[x]
,
sq_exists: ∃x:A [B[x]]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
false: False
,
true: True
,
apply: f a
,
function: x:A ⟶ B[x]
,
product: x:A × B[x]
,
natural_number: $n
,
equal: s = t ∈ T
Definitions occuring in definition :
sq_exists: ∃x:A [B[x]]
,
int_seg: {i..j-}
,
natural_number: $n
,
b-union: A ⋃ B
,
product: x:A × B[x]
,
function: x:A ⟶ B[x]
,
exists: ∃x:A. B[x]
,
and: P ∧ Q
,
uimplies: b supposing a
,
equal: s = t ∈ T
,
all: ∀x:A. B[x]
,
nat: ℕ
,
le: A ≤ B
,
implies: P
⇒ Q
,
isint: isint def,
apply: f a
,
true: True
,
false: False
FDL editor aliases :
basic-strong-continuity
Latex:
basic-strong-continuity(T;F) ==
\mexists{}M:n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} T) {}\mrightarrow{} (\mBbbN{} \mcup{} (\mBbbN{} \mtimes{} \mBbbN{})) [(\mforall{}f:\mBbbN{} {}\mrightarrow{} T
((\mexists{}n:\mBbbN{}. ((M n f) = (F f)))
\mwedge{} (\mforall{}n:\mBbbN{}. (M n f) = (F f) supposing M n f is an integer)
\mwedge{} (\mforall{}n,m:\mBbbN{}.
((n \mleq{} m)
{}\mRightarrow{} M n f is an integer
{}\mRightarrow{} M m f is an integer))))]
Date html generated:
2019_06_20-PM-02_50_11
Last ObjectModification:
2019_02_11-AM-11_18_07
Theory : continuity
Home
Index