Step
*
1
2
1
of Lemma
decidable-cantor-to-int
1. n : ℕ
2. R : ℤ ⟶ ℤ ⟶ ℙ
3. ∀x,y:ℤ. Dec(R[x;y])
4. F : (ℕ ⟶ 𝔹) ⟶ ℤ
5. ∀f,g:ℕ ⟶ 𝔹. ((f = g ∈ (ℕn ⟶ 𝔹))
⇒ ((F f) = (F g) ∈ ℤ))
6. f : ℕ ⟶ 𝔹
7. g : ℕ ⟶ 𝔹
8. R[F f;F g]
⊢ R[F (λi.if i <z n then f i else ff fi );F (λi.if i <z n then g i else ff fi )]
BY
{ (NthHypEq (-1) THEN (EqCD THENA Auto) THEN Auto THEN EqCD THEN Auto) }
Latex:
Latex:
1. n : \mBbbN{}
2. R : \mBbbZ{} {}\mrightarrow{} \mBbbZ{} {}\mrightarrow{} \mBbbP{}
3. \mforall{}x,y:\mBbbZ{}. Dec(R[x;y])
4. F : (\mBbbN{} {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} \mBbbZ{}
5. \mforall{}f,g:\mBbbN{} {}\mrightarrow{} \mBbbB{}. ((f = g) {}\mRightarrow{} ((F f) = (F g)))
6. f : \mBbbN{} {}\mrightarrow{} \mBbbB{}
7. g : \mBbbN{} {}\mrightarrow{} \mBbbB{}
8. R[F f;F g]
\mvdash{} R[F (\mlambda{}i.if i <z n then f i else ff fi );F (\mlambda{}i.if i <z n then g i else ff fi )]
By
Latex:
(NthHypEq (-1) THEN (EqCD THENA Auto) THEN Auto THEN EqCD THEN Auto)
Home
Index