Step
*
1
1
1
1
of Lemma
decidable-finite-cantor
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. ∀x,y:T. Dec(R[x;y])
4. n : ℕ
5. F : (ℕn ⟶ 𝔹) ⟶ T
6. s : 𝔹 List
7. t : 𝔹 List
8. ||s|| = (n - 0) ∈ ℤ
9. ||t|| = (n - 0) ∈ ℤ
10. R[F (λi.s[i]);F (λi.t[i])]
⊢ ∃fg:ℕn ⟶ 𝔹 × (ℕn ⟶ 𝔹) [let f,g = fg
in (∀i:ℕn - 0. f i = s[i]) ∧ (∀i:ℕn - 0. g i = t[i]) ∧ R[F f;F g]]
BY
{ TACTIC:(InstConcl [⌜<λi.s[i], λi.t[i]>⌝]⋅ THEN Reduce 0 THEN Auto) }
Latex:
Latex:
1. [T] : Type
2. [R] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. \mforall{}x,y:T. Dec(R[x;y])
4. n : \mBbbN{}
5. F : (\mBbbN{}n {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} T
6. s : \mBbbB{} List
7. t : \mBbbB{} List
8. ||s|| = (n - 0)
9. ||t|| = (n - 0)
10. R[F (\mlambda{}i.s[i]);F (\mlambda{}i.t[i])]
\mvdash{} \mexists{}fg:\mBbbN{}n {}\mrightarrow{} \mBbbB{} \mtimes{} (\mBbbN{}n {}\mrightarrow{} \mBbbB{}) [let f,g = fg
in (\mforall{}i:\mBbbN{}n - 0. f i = s[i]) \mwedge{} (\mforall{}i:\mBbbN{}n - 0. g i = t[i]) \mwedge{} R[F f;F g]]
By
Latex:
TACTIC:(InstConcl [\mkleeneopen{}<\mlambda{}i.s[i], \mlambda{}i.t[i]>\mkleeneclose{}]\mcdot{} THEN Reduce 0 THEN Auto)
Home
Index