Nuprl Lemma : ext2Cantor_wf
∀[n:ℕ]. ∀[f:ℕn ⟶ 𝔹]. ∀[d:𝔹].  (ext2Cantor(n;f;d) ∈ ℕ ⟶ 𝔹)
Proof
Definitions occuring in Statement : 
ext2Cantor: ext2Cantor(n;f;d)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ext2Cantor: ext2Cantor(n;f;d)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
prop: ℙ
, 
bfalse: ff
Lemmas referenced : 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
int_seg_wf, 
lelt_wf, 
equal_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
functionEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[d:\mBbbB{}].    (ext2Cantor(n;f;d)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbB{})
Date html generated:
2017_04_17-AM-09_57_41
Last ObjectModification:
2017_02_27-PM-05_50_53
Theory : continuity
Home
Index