Step
*
2
of Lemma
intuitionistic-pigeonhole
1. A : ℕ ⟶ ℙ@i'
2. B : ℕ ⟶ ℙ@i'
3. ∀s:StrictInc. ⇃(∃n:ℕ. A[s n])@i
4. ∀s:StrictInc. ⇃(∃n:ℕ. B[s n])@i
5. s : StrictInc@i
6. ⇃(∃s@0:StrictInc. ∀n:ℕ. A[s (s@0 n)])
⊢ ⇃(∃n:ℕ. (A[s n] ∧ B[s n]))
BY
{ (MoveToConcl (-1) THEN Assert ⌜⇃(∀s:StrictInc. ∃n:ℕ. B[s n])⌝⋅) }
1
.....assertion.....
1. A : ℕ ⟶ ℙ@i'
2. B : ℕ ⟶ ℙ@i'
3. ∀s:StrictInc. ⇃(∃n:ℕ. A[s n])@i
4. ∀s:StrictInc. ⇃(∃n:ℕ. B[s n])@i
5. s : StrictInc@i
⊢ ⇃(∀s:StrictInc. ∃n:ℕ. B[s n])
2
1. A : ℕ ⟶ ℙ@i'
2. B : ℕ ⟶ ℙ@i'
3. ∀s:StrictInc. ⇃(∃n:ℕ. A[s n])@i
4. ∀s:StrictInc. ⇃(∃n:ℕ. B[s n])@i
5. s : StrictInc@i
6. ⇃(∀s:StrictInc. ∃n:ℕ. B[s n])
⊢ ⇃(∃s@0:StrictInc. ∀n:ℕ. A[s (s@0 n)])
⇒ ⇃(∃n:ℕ. (A[s n] ∧ B[s n]))
Latex:
Latex:
1. A : \mBbbN{} {}\mrightarrow{} \mBbbP{}@i'
2. B : \mBbbN{} {}\mrightarrow{} \mBbbP{}@i'
3. \mforall{}s:StrictInc. \00D9(\mexists{}n:\mBbbN{}. A[s n])@i
4. \mforall{}s:StrictInc. \00D9(\mexists{}n:\mBbbN{}. B[s n])@i
5. s : StrictInc@i
6. \00D9(\mexists{}s@0:StrictInc. \mforall{}n:\mBbbN{}. A[s (s@0 n)])
\mvdash{} \00D9(\mexists{}n:\mBbbN{}. (A[s n] \mwedge{} B[s n]))
By
Latex:
(MoveToConcl (-1) THEN Assert \mkleeneopen{}\00D9(\mforall{}s:StrictInc. \mexists{}n:\mBbbN{}. B[s n])\mkleeneclose{}\mcdot{})
Home
Index