Step * 1 1 1 2 1 1 1 of Lemma monotone-bar-induction3-2


1. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  (∀m:ℕB[n 1;s.m@n]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  Q[n;s])
5. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕQ[n 1;s.m@n])  Q[n;s])
6. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃m:ℕB[m;alpha])
7. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
8. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ
      ∃k:ℕn. (((λf,n. (B f)) k) ∧ ((M f) (inl k) ∈ (ℕ?)) ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl k) ∈ (ℕ?))))\000C)
9. : ℕ
10. : ℕn ⟶ ℕ
11. ↑isl(M s)
12. n@0 : ℕ
13. : ℕn@0
14. f,n. (B f)) ext2Baire(n;s;0) i
15. (M n@0 ext2Baire(n;s;0)) (inl i) ∈ (ℕ?)
16. ∀m:ℕ((↑isl(M ext2Baire(n;s;0)))  ((M ext2Baire(n;s;0)) (inl i) ∈ (ℕ?)))
17. (M ext2Baire(n;s;0)) (inl i) ∈ (ℕ?)
18. (M ext2Baire(n;s;0)) (inl i) ∈ {z:ℕ?| (z (M ext2Baire(n;s;0)) ∈ (ℕ?)) ∧ (z (inl i) ∈ (ℕ?))} 
19. : ℤ
20. 0 ≤ x
21. (inl x) (M ext2Baire(n;s;0)) ∈ (ℕ?)
22. i ∈ ℕ
⊢ x < n
BY
(MoveToConcl (-2) THEN GenConclAtAddr [1;3]) }

1
1. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  (∀m:ℕB[n 1;s.m@n]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  Q[n;s])
5. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕQ[n 1;s.m@n])  Q[n;s])
6. bar : ∀alpha:ℕ ⟶ ℕ. ⇃(∃m:ℕB[m;alpha])
7. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
8. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ
      ∃k:ℕn. (((λf,n. (B f)) k) ∧ ((M f) (inl k) ∈ (ℕ?)) ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl k) ∈ (ℕ?))))\000C)
9. : ℕ
10. : ℕn ⟶ ℕ
11. ↑isl(M s)
12. n@0 : ℕ
13. : ℕn@0
14. f,n. (B f)) ext2Baire(n;s;0) i
15. (M n@0 ext2Baire(n;s;0)) (inl i) ∈ (ℕ?)
16. ∀m:ℕ((↑isl(M ext2Baire(n;s;0)))  ((M ext2Baire(n;s;0)) (inl i) ∈ (ℕ?)))
17. (M ext2Baire(n;s;0)) (inl i) ∈ (ℕ?)
18. (M ext2Baire(n;s;0)) (inl i) ∈ {z:ℕ?| (z (M ext2Baire(n;s;0)) ∈ (ℕ?)) ∧ (z (inl i) ∈ (ℕ?))} 
19. : ℤ
20. 0 ≤ x
21. i ∈ ℕ
22. : ℕn?
23. (M ext2Baire(n;s;0)) v ∈ (ℕn?)
⊢ ((inl x) v ∈ (ℕ?))  x < n


Latex:


Latex:

1.  B  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
2.  Q  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
3.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  B[n  +  1;s.m@n]))
4.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  Q[n;s])
5.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  Q[n  +  1;s.m@n])  {}\mRightarrow{}  Q[n;s])
6.  bar  :  \mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}m:\mBbbN{}.  B[m;alpha])
7.  M  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
8.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
          \mexists{}n:\mBbbN{}
            \mexists{}k:\mBbbN{}n
              (((\mlambda{}f,n.  (B  n  f))  f  k)  \mwedge{}  ((M  n  f)  =  (inl  k))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  k))))\000C)
9.  n  :  \mBbbN{}
10.  s  :  \mBbbN{}n  {}\mrightarrow{}  \mBbbN{}
11.  \muparrow{}isl(M  n  s)
12.  n@0  :  \mBbbN{}
13.  i  :  \mBbbN{}n@0
14.  (\mlambda{}f,n.  (B  n  f))  ext2Baire(n;s;0)  i
15.  (M  n@0  ext2Baire(n;s;0))  =  (inl  i)
16.  \mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  ext2Baire(n;s;0)))  {}\mRightarrow{}  ((M  m  ext2Baire(n;s;0))  =  (inl  i)))
17.  (M  n  ext2Baire(n;s;0))  =  (inl  i)
18.  (M  n  ext2Baire(n;s;0))  =  (inl  i)
19.  x  :  \mBbbZ{}
20.  0  \mleq{}  x
21.  (inl  x)  =  (M  n  ext2Baire(n;s;0))
22.  x  =  i
\mvdash{}  x  <  n


By


Latex:
(MoveToConcl  (-2)  THEN  GenConclAtAddr  [1;3])




Home Index