Step * 1 1 of Lemma monotone-bar-induction4

.....assertion..... 
1. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  ⇃(Q[n;s]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n 1;s.m@n]))  ⇃(Q[n;s]))
5. bar : ∀alpha:ℕ ⟶ ℕ
           ⇃(∃n:ℕ
              (B[n;alpha] ∧ (∀m:{n...}. ∀s:ℕm ⟶ ℕ.  ((alpha s ∈ (ℕm ⟶ ℕ))  B[m;s]  (∀k:ℕB[m 1;s.k@m])))))
6. ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
      ∀f:ℕ ⟶ ℕ
        ∃n:ℕ
         ∃k:ℕn
          (((B f) ∧ (∀m:{k...}. ∀s:ℕm ⟶ ℕ.  ((f s ∈ (ℕm ⟶ ℕ))  B[m;s]  (∀k:ℕB[m 1;s.k@m]))))
          ∧ ((M f) (inl k) ∈ (ℕ?))
          ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl k) ∈ (ℕ?))))))
⊢ (∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
    ∀f:ℕ ⟶ ℕ
      ∃n:ℕ
       ∃k:ℕn
        (((B f) ∧ (∀m:{k...}. ∀s:ℕm ⟶ ℕ.  ((f s ∈ (ℕm ⟶ ℕ))  B[m;s]  (∀k:ℕB[m 1;s.k@m]))))
        ∧ ((M f) (inl k) ∈ (ℕ?))
        ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl k) ∈ (ℕ?))))))
 ⇃(Q[0;λx.⊥])
BY
(Thin (-1) THEN (D THENA Auto) THEN ExRepD) }

1
1. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  ⇃(Q[n;s]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. ⇃(Q[n 1;s.m@n]))  ⇃(Q[n;s]))
5. bar : ∀alpha:ℕ ⟶ ℕ
           ⇃(∃n:ℕ
              (B[n;alpha] ∧ (∀m:{n...}. ∀s:ℕm ⟶ ℕ.  ((alpha s ∈ (ℕm ⟶ ℕ))  B[m;s]  (∀k:ℕB[m 1;s.k@m])))))
6. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
7. ∀f:ℕ ⟶ ℕ
     ∃n:ℕ
      ∃k:ℕn
       (((B f) ∧ (∀m:{k...}. ∀s:ℕm ⟶ ℕ.  ((f s ∈ (ℕm ⟶ ℕ))  B[m;s]  (∀k:ℕB[m 1;s.k@m]))))
       ∧ ((M f) (inl k) ∈ (ℕ?))
       ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl k) ∈ (ℕ?)))))
⊢ ⇃(Q[0;λx.⊥])


Latex:


Latex:
.....assertion..... 
1.  B  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
2.  Q  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
3.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  \00D9(Q[n;s]))
4.  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  \00D9(Q[n  +  1;s.m@n]))  {}\mRightarrow{}  \00D9(Q[n;s]))
5.  bar  :  \mforall{}alpha:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
                      \00D9(\mexists{}n:\mBbbN{}
                            (B[n;alpha]
                            \mwedge{}  (\mforall{}m:\{n...\}.  \mforall{}s:\mBbbN{}m  {}\mrightarrow{}  \mBbbN{}.    ((alpha  =  s)  {}\mRightarrow{}  B[m;s]  {}\mRightarrow{}  (\mforall{}k:\mBbbN{}.  B[m  +  1;s.k@m])))))
6.  \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
            \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
                \mexists{}n:\mBbbN{}
                  \mexists{}k:\mBbbN{}n
                    (((B  k  f)  \mwedge{}  (\mforall{}m:\{k...\}.  \mforall{}s:\mBbbN{}m  {}\mrightarrow{}  \mBbbN{}.    ((f  =  s)  {}\mRightarrow{}  B[m;s]  {}\mRightarrow{}  (\mforall{}k:\mBbbN{}.  B[m  +  1;s.k@m]))))
                    \mwedge{}  ((M  n  f)  =  (inl  k))
                    \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  k))))))
\mvdash{}  (\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
        \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
            \mexists{}n:\mBbbN{}
              \mexists{}k:\mBbbN{}n
                (((B  k  f)  \mwedge{}  (\mforall{}m:\{k...\}.  \mforall{}s:\mBbbN{}m  {}\mrightarrow{}  \mBbbN{}.    ((f  =  s)  {}\mRightarrow{}  B[m;s]  {}\mRightarrow{}  (\mforall{}k:\mBbbN{}.  B[m  +  1;s.k@m]))))
                \mwedge{}  ((M  n  f)  =  (inl  k))
                \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  k))))))
{}\mRightarrow{}  \00D9(Q[0;\mlambda{}x.\mbot{}])


By


Latex:
(Thin  (-1)  THEN  (D  0  THENA  Auto)  THEN  ExRepD)




Home Index