Step
*
1
1
of Lemma
monotone-bar-induction4
.....assertion.....
1. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. (B[n;s]
⇒ ⇃(Q[n;s]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. ((∀m:ℕ. ⇃(Q[n + 1;s.m@n]))
⇒ ⇃(Q[n;s]))
5. bar : ∀alpha:ℕ ⟶ ℕ
⇃(∃n:ℕ
(B[n;alpha] ∧ (∀m:{n...}. ∀s:ℕm ⟶ ℕ. ((alpha = s ∈ (ℕm ⟶ ℕ))
⇒ B[m;s]
⇒ (∀k:ℕ. B[m + 1;s.k@m])))))
6. ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
∀f:ℕ ⟶ ℕ
∃n:ℕ
∃k:ℕn
(((B k f) ∧ (∀m:{k...}. ∀s:ℕm ⟶ ℕ. ((f = s ∈ (ℕm ⟶ ℕ))
⇒ B[m;s]
⇒ (∀k:ℕ. B[m + 1;s.k@m]))))
∧ ((M n f) = (inl k) ∈ (ℕ?))
∧ (∀m:ℕ. ((↑isl(M m f))
⇒ ((M m f) = (inl k) ∈ (ℕ?))))))
⊢ (∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
∀f:ℕ ⟶ ℕ
∃n:ℕ
∃k:ℕn
(((B k f) ∧ (∀m:{k...}. ∀s:ℕm ⟶ ℕ. ((f = s ∈ (ℕm ⟶ ℕ))
⇒ B[m;s]
⇒ (∀k:ℕ. B[m + 1;s.k@m]))))
∧ ((M n f) = (inl k) ∈ (ℕ?))
∧ (∀m:ℕ. ((↑isl(M m f))
⇒ ((M m f) = (inl k) ∈ (ℕ?))))))
⇒ ⇃(Q[0;λx.⊥])
BY
{ (Thin (-1) THEN (D 0 THENA Auto) THEN ExRepD) }
1
1. B : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. (B[n;s]
⇒ ⇃(Q[n;s]))
4. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. ((∀m:ℕ. ⇃(Q[n + 1;s.m@n]))
⇒ ⇃(Q[n;s]))
5. bar : ∀alpha:ℕ ⟶ ℕ
⇃(∃n:ℕ
(B[n;alpha] ∧ (∀m:{n...}. ∀s:ℕm ⟶ ℕ. ((alpha = s ∈ (ℕm ⟶ ℕ))
⇒ B[m;s]
⇒ (∀k:ℕ. B[m + 1;s.k@m])))))
6. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
7. ∀f:ℕ ⟶ ℕ
∃n:ℕ
∃k:ℕn
(((B k f) ∧ (∀m:{k...}. ∀s:ℕm ⟶ ℕ. ((f = s ∈ (ℕm ⟶ ℕ))
⇒ B[m;s]
⇒ (∀k:ℕ. B[m + 1;s.k@m]))))
∧ ((M n f) = (inl k) ∈ (ℕ?))
∧ (∀m:ℕ. ((↑isl(M m f))
⇒ ((M m f) = (inl k) ∈ (ℕ?)))))
⊢ ⇃(Q[0;λx.⊥])
Latex:
Latex:
.....assertion.....
1. B : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbP{}
2. Q : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbP{}
3. \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. (B[n;s] {}\mRightarrow{} \00D9(Q[n;s]))
4. \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. ((\mforall{}m:\mBbbN{}. \00D9(Q[n + 1;s.m@n])) {}\mRightarrow{} \00D9(Q[n;s]))
5. bar : \mforall{}alpha:\mBbbN{} {}\mrightarrow{} \mBbbN{}
\00D9(\mexists{}n:\mBbbN{}
(B[n;alpha]
\mwedge{} (\mforall{}m:\{n...\}. \mforall{}s:\mBbbN{}m {}\mrightarrow{} \mBbbN{}. ((alpha = s) {}\mRightarrow{} B[m;s] {}\mRightarrow{} (\mforall{}k:\mBbbN{}. B[m + 1;s.k@m])))))
6. \00D9(\mexists{}M:n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} (\mBbbN{}n?)
\mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}
\mexists{}n:\mBbbN{}
\mexists{}k:\mBbbN{}n
(((B k f) \mwedge{} (\mforall{}m:\{k...\}. \mforall{}s:\mBbbN{}m {}\mrightarrow{} \mBbbN{}. ((f = s) {}\mRightarrow{} B[m;s] {}\mRightarrow{} (\mforall{}k:\mBbbN{}. B[m + 1;s.k@m]))))
\mwedge{} ((M n f) = (inl k))
\mwedge{} (\mforall{}m:\mBbbN{}. ((\muparrow{}isl(M m f)) {}\mRightarrow{} ((M m f) = (inl k))))))
\mvdash{} (\mexists{}M:n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} (\mBbbN{}n?)
\mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}
\mexists{}n:\mBbbN{}
\mexists{}k:\mBbbN{}n
(((B k f) \mwedge{} (\mforall{}m:\{k...\}. \mforall{}s:\mBbbN{}m {}\mrightarrow{} \mBbbN{}. ((f = s) {}\mRightarrow{} B[m;s] {}\mRightarrow{} (\mforall{}k:\mBbbN{}. B[m + 1;s.k@m]))))
\mwedge{} ((M n f) = (inl k))
\mwedge{} (\mforall{}m:\mBbbN{}. ((\muparrow{}isl(M m f)) {}\mRightarrow{} ((M m f) = (inl k))))))
{}\mRightarrow{} \00D9(Q[0;\mlambda{}x.\mbot{}])
By
Latex:
(Thin (-1) THEN (D 0 THENA Auto) THEN ExRepD)
Home
Index