Step
*
1
1
1
of Lemma
monotone-bar-induction8
1. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. ((∀m:ℕ. ⇃(Q[n + 1;s.m@n]))
⇒ ⇃(Q[n;s]))
3. bar : ∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. ⇃(Q[m;f]))
4. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
5. ∀f:ℕ ⟶ ℕ
∃n:ℕ
∃k:ℕn
((∀m:{k...}. ⇃(Q[m;f])) ∧ ((M n f) = (inl k) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ ((M m f) = (inl k) ∈ (ℕ?)))))
⊢ ⇃(Q[0;λx.⊥])
BY
{ (InstLemma `basic_bar_induction` [⌜ℕ⌝;⌜λ2n f.↑isl(M n f)⌝;⌜λ2n s.⇃(Q[n;s])⌝]⋅ THEN Auto) }
1
1. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. ((∀m:ℕ. ⇃(Q[n + 1;s.m@n]))
⇒ ⇃(Q[n;s]))
3. bar : ∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. ⇃(Q[m;f]))
4. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
5. ∀f:ℕ ⟶ ℕ
∃n:ℕ
∃k:ℕn
((∀m:{k...}. ⇃(Q[m;f])) ∧ ((M n f) = (inl k) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ ((M m f) = (inl k) ∈ (ℕ?)))))
6. n : ℕ
7. s : ℕn ⟶ ℕ
8. ↑isl(M n s)
⊢ ⇃(Q[n;s])
2
1. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. ((∀m:ℕ. ⇃(Q[n + 1;s.m@n]))
⇒ ⇃(Q[n;s]))
3. bar : ∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. ⇃(Q[m;f]))
4. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
5. ∀f:ℕ ⟶ ℕ
∃n:ℕ
∃k:ℕn
((∀m:{k...}. ⇃(Q[m;f])) ∧ ((M n f) = (inl k) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ ((M m f) = (inl k) ∈ (ℕ?)))))
6. n : ℕ
7. s : ℕn ⟶ ℕ
8. ∀t:ℕ. ⇃(Q[n + 1;s++t])
⊢ ⇃(Q[n;s])
3
1. Q : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. ∀n:ℕ. ∀s:ℕn ⟶ ℕ. ((∀m:ℕ. ⇃(Q[n + 1;s.m@n]))
⇒ ⇃(Q[n;s]))
3. bar : ∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. ∀m:{n...}. ⇃(Q[m;f]))
4. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
5. ∀f:ℕ ⟶ ℕ
∃n:ℕ
∃k:ℕn
((∀m:{k...}. ⇃(Q[m;f])) ∧ ((M n f) = (inl k) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ ((M m f) = (inl k) ∈ (ℕ?)))))
6. alpha : ℕ ⟶ ℕ
⊢ ↓∃m:ℕ. (↑isl(M m alpha))
Latex:
Latex:
1. Q : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbP{}
2. \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} \mBbbN{}. ((\mforall{}m:\mBbbN{}. \00D9(Q[n + 1;s.m@n])) {}\mRightarrow{} \00D9(Q[n;s]))
3. bar : \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}. \00D9(\mexists{}n:\mBbbN{}. \mforall{}m:\{n...\}. \00D9(Q[m;f]))
4. M : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} (\mBbbN{}n?)
5. \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}
\mexists{}n:\mBbbN{}
\mexists{}k:\mBbbN{}n
((\mforall{}m:\{k...\}. \00D9(Q[m;f]))
\mwedge{} ((M n f) = (inl k))
\mwedge{} (\mforall{}m:\mBbbN{}. ((\muparrow{}isl(M m f)) {}\mRightarrow{} ((M m f) = (inl k)))))
\mvdash{} \00D9(Q[0;\mlambda{}x.\mbot{}])
By
Latex:
(InstLemma `basic\_bar\_induction` [\mkleeneopen{}\mBbbN{}\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}n f.\muparrow{}isl(M n f)\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}n s.\00D9(Q[n;s])\mkleeneclose{}]\mcdot{} THEN Auto)
Home
Index