Step
*
1
1
1
1
of Lemma
notAC20
1. T : Type@i'
2. ⇃T@i
3. ∀P:((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ T ⟶ ℙ
((∀n:(ℕ ⟶ ℕ) ⟶ ℕ. ⇃∃m:T. (P n m))
⇒ ⇃∃f:((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ T. ∀n:(ℕ ⟶ ℕ) ⟶ ℕ. (P n (f n)))@i'
4. P : ((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ ℙ@i'
5. ∀t:(ℕ ⟶ ℕ) ⟶ ℕ. ⇃(P[t])@i
6. n : (ℕ ⟶ ℕ) ⟶ ℕ@i
7. ⇃(P[n])
⊢ ⇃∃m:T. (P n)
BY
{ (All(RepUR ``qsquash``)
THEN (BLemma `prop-truncation-quot` THENA Auto)
THEN (Assert ⌜P[n]
⇒ ⇃(∃m:T. (P n))⌝⋅
THENM (RenameVar `f' (-1) THEN RenameVar `M' (-2) THEN UseWitness ⌜f M⌝⋅ THEN (newQuotientElim1 (-2)⋅ THEN Auto))
)
THEN (D 0 THENA Auto)) }
1
1. T : Type@i'
2. ⇃(T)@i
3. ∀P:((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ T ⟶ ℙ
((∀n:(ℕ ⟶ ℕ) ⟶ ℕ. ⇃(∃m:T. (P n m)))
⇒ ⇃(∃f:((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ T. ∀n:(ℕ ⟶ ℕ) ⟶ ℕ. (P n (f n))))@i'
4. P : ((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ ℙ@i'
5. ∀t:(ℕ ⟶ ℕ) ⟶ ℕ. ⇃(P[t])@i
6. n : (ℕ ⟶ ℕ) ⟶ ℕ@i
7. ⇃(P[n])
8. P[n]@i
⊢ ⇃(∃m:T. (P n))
Latex:
Latex:
1. T : Type@i'
2. \00D9T@i
3. \mforall{}P:((\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
((\mforall{}n:(\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}. \00D9\mexists{}m:T. (P n m))
{}\mRightarrow{} \00D9\mexists{}f:((\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} T. \mforall{}n:(\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}. (P n (f n)))@i'
4. P : ((\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbP{}@i'
5. \mforall{}t:(\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}. \00D9(P[t])@i
6. n : (\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}@i
7. \00D9(P[n])
\mvdash{} \00D9\mexists{}m:T. (P n)
By
Latex:
(All(RepUR ``qsquash``)
THEN (BLemma `prop-truncation-quot` THENA Auto)
THEN (Assert \mkleeneopen{}P[n] {}\mRightarrow{} \00D9(\mexists{}m:T. (P n))\mkleeneclose{}\mcdot{}
THENM (RenameVar `f' (-1)
THEN RenameVar `M' (-2)
THEN UseWitness \mkleeneopen{}f M\mkleeneclose{}\mcdot{}
THEN (newQuotientElim1 (-2)\mcdot{} THEN Auto))
)
THEN (D 0 THENA Auto))
Home
Index