Step
*
1
1
2
of Lemma
notAC20
1. T : Type@i'
2. ⇃T@i
3. ∀P:((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ T ⟶ ℙ
((∀n:(ℕ ⟶ ℕ) ⟶ ℕ. ⇃∃m:T. (P n m))
⇒ ⇃∃f:((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ T. ∀n:(ℕ ⟶ ℕ) ⟶ ℕ. (P n (f n)))@i'
4. P : ((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ ℙ@i'
5. ∀t:(ℕ ⟶ ℕ) ⟶ ℕ. ⇃(P[t])@i
6. ⇃∃f:((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ T. ∀n:(ℕ ⟶ ℕ) ⟶ ℕ. ((λf,t. P[f]) n (f n))
⊢ ⇃(∀t:(ℕ ⟶ ℕ) ⟶ ℕ. P[t])
BY
{ All(RepUR ``so_apply qsquash``) }
1
1. T : Type@i'
2. ⇃(T)@i
3. ∀P:((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ T ⟶ ℙ
((∀n:(ℕ ⟶ ℕ) ⟶ ℕ. ⇃(∃m:T. (P n m)))
⇒ ⇃(∃f:((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ T. ∀n:(ℕ ⟶ ℕ) ⟶ ℕ. (P n (f n))))@i'
4. P : ((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ ℙ@i'
5. ∀t:(ℕ ⟶ ℕ) ⟶ ℕ. ⇃(P t)@i
6. ⇃(∃f:((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ T. ∀n:(ℕ ⟶ ℕ) ⟶ ℕ. (P n))
⊢ ⇃(∀t:(ℕ ⟶ ℕ) ⟶ ℕ. (P t))
Latex:
Latex:
1. T : Type@i'
2. \00D9T@i
3. \mforall{}P:((\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
((\mforall{}n:(\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}. \00D9\mexists{}m:T. (P n m))
{}\mRightarrow{} \00D9\mexists{}f:((\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} T. \mforall{}n:(\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}. (P n (f n)))@i'
4. P : ((\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbP{}@i'
5. \mforall{}t:(\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}. \00D9(P[t])@i
6. \00D9\mexists{}f:((\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} T. \mforall{}n:(\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}. ((\mlambda{}f,t. P[f]) n (f n))
\mvdash{} \00D9(\mforall{}t:(\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}. P[t])
By
Latex:
All(RepUR ``so\_apply qsquash``)
Home
Index