Step
*
1
1
1
of Lemma
seq-cont-nat
.....assertion.....
1. F : (ℕ ⟶ ℕ) ⟶ ℕ
2. f : ℕ ⟶ ℕ
3. g : ℕ ⟶ ℕ ⟶ ℕ
4. ∀k:ℕ. ∃n:ℕ. ∀m:{n...}. ((g m) = f ∈ (ℕk ⟶ ℕ))
5. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
6. ∀f:ℕ ⟶ ℕ. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f)))
7. n : ℕ
8. (M n f) = (inl (F f)) ∈ (ℕ?)
9. ∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f)
10. n@0 : ℕ
11. ∀m:{n@0...}. ((g m) = f ∈ (ℕn ⟶ ℕ))
12. m : {n@0...}
13. (g m) = f ∈ (ℕn ⟶ ℕ)
⊢ (inl (F (g m))) = (inl (F f)) ∈ (ℕ?)
BY
{ ((InstHyp [⌜g m⌝] 6⋅ THENA Auto) THEN D -1 THEN (InstHyp [⌜n⌝] (-1)⋅ THENA Auto)) }
1
1. F : (ℕ ⟶ ℕ) ⟶ ℕ
2. f : ℕ ⟶ ℕ
3. g : ℕ ⟶ ℕ ⟶ ℕ
4. ∀k:ℕ. ∃n:ℕ. ∀m:{n...}. ((g m) = f ∈ (ℕk ⟶ ℕ))
5. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
6. ∀f:ℕ ⟶ ℕ. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f)))
7. n : ℕ
8. (M n f) = (inl (F f)) ∈ (ℕ?)
9. ∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f)
10. n@0 : ℕ
11. ∀m:{n@0...}. ((g m) = f ∈ (ℕn ⟶ ℕ))
12. m : {n@0...}
13. (g m) = f ∈ (ℕn ⟶ ℕ)
14. ∃n:ℕ. ((M n (g m)) = (inl (F (g m))) ∈ (ℕ?))
15. ∀n:ℕ. (M n (g m)) = (inl (F (g m))) ∈ (ℕ?) supposing ↑isl(M n (g m))
16. (M n (g m)) = (inl (F (g m))) ∈ (ℕ?)
⊢ (inl (F (g m))) = (inl (F f)) ∈ (ℕ?)
Latex:
Latex:
.....assertion.....
1. F : (\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}
2. f : \mBbbN{} {}\mrightarrow{} \mBbbN{}
3. g : \mBbbN{} {}\mrightarrow{} \mBbbN{} {}\mrightarrow{} \mBbbN{}
4. \mforall{}k:\mBbbN{}. \mexists{}n:\mBbbN{}. \mforall{}m:\{n...\}. ((g m) = f)
5. M : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} (\mBbbN{}?)
6. \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}
((\mexists{}n:\mBbbN{}. ((M n f) = (inl (F f)))) \mwedge{} (\mforall{}n:\mBbbN{}. (M n f) = (inl (F f)) supposing \muparrow{}isl(M n f)))
7. n : \mBbbN{}
8. (M n f) = (inl (F f))
9. \mforall{}n:\mBbbN{}. (M n f) = (inl (F f)) supposing \muparrow{}isl(M n f)
10. n@0 : \mBbbN{}
11. \mforall{}m:\{n@0...\}. ((g m) = f)
12. m : \{n@0...\}
13. (g m) = f
\mvdash{} (inl (F (g m))) = (inl (F f))
By
Latex:
((InstHyp [\mkleeneopen{}g m\mkleeneclose{}] 6\mcdot{} THENA Auto) THEN D -1 THEN (InstHyp [\mkleeneopen{}n\mkleeneclose{}] (-1)\mcdot{} THENA Auto))
Home
Index