Nuprl Lemma : simple-decidable-finite-cantor-ext

[T:Type]. ∀[R:T ⟶ ℙ].  ((∀x:T. Dec(R[x]))  (∀n:ℕ. ∀F:(ℕn ⟶ 𝔹) ⟶ T.  Dec(∃f:ℕn ⟶ 𝔹R[F f])))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: bool: 𝔹 decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  member: t ∈ T it: ifthenelse: if then else fi  simple-finite-cantor-decider: FiniteCantorDecide(dcdr;n;F) simple-decidable-finite-cantor sq_stable_from_decidable sq_stable__from_stable stable__from_decidable any: any x
Lemmas referenced :  simple-decidable-finite-cantor sq_stable_from_decidable sq_stable__from_stable stable__from_decidable
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  \mBbbP{}].    ((\mforall{}x:T.  Dec(R[x]))  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}F:(\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T.    Dec(\mexists{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.  R[F  f])))



Date html generated: 2018_05_21-PM-01_17_25
Last ObjectModification: 2018_05_19-AM-06_32_32

Theory : continuity


Home Index