Nuprl Lemma : sq_stable__from_stable
∀[P:ℙ]. (Stable{P} ⇒ SqStable(P))
Proof
Definitions occuring in Statement : 
sq_stable: SqStable(P), 
stable: Stable{P}, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
implies: P ⇒ Q
Definitions unfolded in proof : 
sq_stable: SqStable(P), 
stable: Stable{P}, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
squash: ↓T, 
not: ¬A, 
false: False
Lemmas referenced : 
squash_wf, 
isect_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
Error :universeIsType, 
universeEquality, 
independent_isectElimination, 
imageElimination, 
independent_functionElimination, 
voidElimination
Latex:
\mforall{}[P:\mBbbP{}].  (Stable\{P\}  {}\mRightarrow{}  SqStable(P))
Date html generated:
2019_06_20-AM-11_15_31
Last ObjectModification:
2018_09_26-AM-10_23_44
Theory : core_2
Home
Index